cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A072018 Numbers k for which gcd(k, reverse(k)) = 243 = 3^5.

Original entry on oeis.org

4899999987, 4989999897, 4999889997, 4999997889, 5889998997, 5889999969, 5898989997, 5898998988, 5899899789, 5899979979, 5899987998, 5899989699, 5899996989, 5979999879, 5988899997, 5988998898, 5989889979, 5989897998
Offset: 1

Views

Author

Labos Elemer, Jun 05 2002

Keywords

Examples

			k = 4899999987 = 3*3*3*3*3*157*128437 and reverse(k) = 78999999984 = 2*2*2*2*3*3*3*3*3*3*2031893, gcd = 243. Numerous but not all solutions are obtained by inserting strings of 9's between digits of A071016. Further such regular transformations exist.
		

Crossrefs

A256754 a(n) = bitwise AND of n and the reverse of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 4, 13, 8, 3, 16, 1, 16, 19, 0, 4, 22, 0, 8, 16, 26, 8, 16, 28, 2, 13, 0, 33, 34, 33, 36, 1, 2, 5, 0, 8, 8, 34, 44, 36, 0, 10, 16, 16, 0, 3, 16, 33, 36, 55, 0, 9, 16, 27, 4, 16, 26, 36, 0, 0, 66, 64, 68, 64, 6, 1, 8, 1, 10
Offset: 0

Views

Author

Alois P. Heinz, Apr 09 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> Bits[And](n, (s-> parse(cat(s[-i]$i=1..length(s))))(""||n)):
    seq(a(n), n=0..80);
  • Mathematica
    Table[BitAnd[n,FromDigits[Reverse[IntegerDigits[n]]]],{n,0,74}] (* Ivan N. Ianakiev, Apr 10 2015 *)
  • PARI
    a(n) = bitand(n, subst(Polrev(digits(n)), x, 10)); \\ Michel Marcus, Apr 10 2015

Formula

a(n) = A004198(n,A004086(n)).

A256755 a(n) = bitwise OR of n and the reverse of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 11, 29, 31, 47, 63, 61, 87, 83, 91, 22, 29, 22, 55, 58, 61, 62, 91, 94, 93, 31, 31, 55, 33, 43, 55, 63, 109, 119, 127, 44, 47, 58, 43, 44, 63, 110, 111, 116, 127, 55, 63, 61, 55, 63, 55, 121, 123, 127, 127, 62, 61, 62, 63, 110
Offset: 0

Views

Author

Alois P. Heinz, Apr 09 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> Bits[Or](n, (s-> parse(cat(s[-i]$i=1..length(s))))(""||n)):
    seq(a(n), n=0..80);
  • Mathematica
    Table[BitOr[n,FromDigits[Reverse[IntegerDigits[n]]]],{n,0,64}] (* Ivan N. Ianakiev, Apr 10 2015 *)
  • PARI
    a(n) = bitor(n, subst(Polrev(digits(n)), x, 10)); \\ Michel Marcus, Apr 10 2015

Formula

a(n) = A003986(n,A004086(n)).

A071685 Non-palindromic numbers n, not divisible by 10, such that either n divides R(n) or R(n) divides n, where R(n) is the digit-reversal of n.

Original entry on oeis.org

1089, 2178, 8712, 9801, 10989, 21978, 87912, 98901, 109989, 219978, 879912, 989901, 1099989, 2199978, 8799912, 9899901, 10891089, 10999989, 21782178, 21999978, 87128712, 87999912, 98019801, 98999901, 108901089, 109999989
Offset: 1

Views

Author

Labos Elemer, Jun 03 2002

Keywords

Comments

The quotient R(n)/n or n/R(n) is always 4 or 9.
This is the union of the four sequence A001232, A222814, A008918, A222815. Equivalently, the union of A008919 and A031877.
There are 4*Fibonacci(floor((n-2)/2)) terms with n digits (this is 2*A214927 or essentially 4*A103609). - Ray Chandler, Oct 12 2017
Conjecture: every term mod 100 is equal to 1, 12, 78, or 89. - Harvey P. Dale, Dec 13 2017

Examples

			Palindromic solutions like 12021 or also solutions divisible by 10 were filtered out like {8380,838; q=10} or {8400,48; q=175}. In case of m>R(m), q=m/R(m)=4 or 9.
		

Crossrefs

Programs

  • Mathematica
    nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] ed[x_] := IntegerDigits[x] red[x_] := Reverse[IntegerDigits[x]] Do[s=Mod[Max[{n, tn[red[n]]}], Min[{n, r=tn[red[n]]}]]; If[Equal[s, 0]&&!Equal[Mod[n, 10], 0] &&!Equal[n, r], Print[{n, r/n}]], {n, 1, 1000000}]
    npnQ[n_]:=Module[{r=IntegerReverse[n]},!PalindromeQ[n]&&!Divisible[ n,10] &&(Mod[n,r]==0||Mod[r,n]==0)]; Select[Range[11*10^7],npnQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 13 2017 *)

Formula

x = q*R(x), q is an integer q<>1, q<>10^j and neither of x or R(x) is divisible by 10.

Extensions

Corrected and extended by Harvey P. Dale, Jul 01 2013
Edited by N. J. A. Sloane, Jul 02 2013
Missing terms inserted by Ray Chandler, Oct 09 2017
Incorrect comment removed by Ray Chandler, Oct 12 2017

A071687 Non-palindromic numbers such that either x=q1.Rev[x] or Rev[x]=q2.x, where R[x]=A004086[x] and q1 or q2 are integers not divisible by 10.

Original entry on oeis.org

510, 540, 810, 1089, 2100, 2178, 4200, 5200, 5610, 5700, 5940, 6300, 8400, 8712, 8910, 9801, 10989, 21978, 23100, 27000, 46200, 51510, 52200, 52800, 54540, 56610, 57200, 59940, 65340, 69300, 81810, 87912, 89910, 98901, 109989, 212100, 217800
Offset: 1

Views

Author

Labos Elemer, Jun 03 2002

Keywords

Examples

			Includes special cases of A071685. Examples represented by {n, Rev[n], integer-quotient} triples: {1089, 9801, 9}, {87912, 21979, 4}, {5610, 165, 34}, {610000, 16, 38125}, etc.
		

Crossrefs

Programs

  • Mathematica
    nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] ed[x_] := IntegerDigits[x] red[x_] := Reverse[ed[x]] Do[s=Mod[ma=Max[{n, tn[red[n]]}], mi=Min[{n, r=tn[red[n]]}]]; If[Equal[s, 0]&&!Equal[n, r] &&!Equal[Mod[ma/mi, 10], 0], Print[{n, r, Max[r/n, n/r]}]], {n, 1, 1000000}]

Formula

q=Max[n/Rev[n], Rev[n]/n]=10m+r integer, where r>0, q>1.

A069652 GCD of all the numbers obtained by permuting the digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 3, 1, 1, 3, 1, 1, 9, 1, 2, 3, 22, 1, 6, 1, 2, 9, 2, 1, 3, 1, 1, 33, 1, 1, 9, 1, 1, 3, 4, 1, 6, 1, 44, 9, 2, 1, 12, 1, 5, 3, 1, 1, 9, 55, 1, 3, 1, 1, 6, 1, 2, 9, 2, 1, 66, 1, 2, 3, 7, 1, 9, 1, 1, 3, 1, 77, 3, 1, 8, 9, 2, 1, 12, 1, 2, 3, 88, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 99, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 111
Offset: 1

Views

Author

Amarnath Murthy, Mar 29 2002

Keywords

Examples

			a(84) = gcd(48,84) = 12 = a(48).
a(101) = gcd(101,11) = 1.
		

Crossrefs

Different from A055483.

Extensions

Edited and extended by Robert G. Wilson v, Apr 02 2002
a(71) corrected by Charles R Greathouse IV, Mar 18 2011

A072017 Numbers k such that gcd(k, reverse(k)) = 81 = 3^4, where reverse(x) = A004086(x).

Original entry on oeis.org

2899999989, 2989999899, 2999889999, 3799999899, 3898989999, 3899799999, 3899999988, 3979989999, 3988899999, 3989999898, 3989999979, 3998999889, 3999889998, 3999898989, 3999899799, 3999979989, 3999988899, 4699998999
Offset: 1

Views

Author

Labos Elemer, Jun 05 2002

Keywords

Comments

Numerous solutions can be constructed by inserting strings of suitable digits between digits of terms in A071016.

Examples

			k = 3*3*3*3*3*449*64157 and reverse(k) = 2*2*3*3*3*3*31*67*14827, GCD = 81.
		

Crossrefs

A337927 a(n) = n / GCD (n, reverse of n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 4, 13, 14, 5, 16, 17, 2, 19, 10, 7, 1, 23, 4, 25, 13, 3, 14, 29, 10, 31, 32, 1, 34, 35, 4, 37, 38, 13, 10, 41, 7, 43, 1, 5, 23, 47, 4, 49, 10, 17, 52, 53, 6, 1, 56, 19, 58, 59, 10, 61, 31, 7, 32, 65, 1, 67, 34, 23, 10, 71, 8, 73, 74, 25, 76, 1, 26, 79
Offset: 1

Views

Author

Ctibor O. Zizka, Oct 05 2020

Keywords

Comments

a(n)=n for n in A226778. - Robert Israel, Oct 09 2020

Examples

			a(12) = 4 since 12 / gcd(12,21) = 4. a(101) = 101 / gcd(101,101) = 1.
		

Crossrefs

Programs

  • Maple
    rev:= proc(n) local L,k;
      L:= convert(n,base,10);
      add(L[-k]*10^(k-1),k=1..nops(L))
    end proc:
    f:= n -> n/igcd(n,rev(n)):
    map(f, [$1..100]); # Robert Israel, Oct 09 2020
  • Mathematica
    Table[n/GCD[n, IntegerReverse[n]], {n, 1, 100}] (* Amiram Eldar, Oct 05 2020 *)
  • PARI
    a(n) = n/gcd(n, fromdigits(Vecrev(digits(n)))); \\ Michel Marcus, Oct 06 2020

Formula

a(n) = n / gcd(n, A004086(n)).
a(n) = n / A055483(n).
a(n) = A000027(n) / A055483(n).

A071678 GCD of n! and the reverse of n!.

Original entry on oeis.org

1, 2, 6, 6, 3, 9, 45, 1152, 189, 189, 99, 594, 594, 198, 99, 198, 99, 594, 99, 378378, 45045, 99, 396, 30294, 2279277, 14256, 3267, 1089, 6336, 9702, 20196, 6534, 396, 11088, 20117097, 99, 99, 6318675, 594, 21978, 1089, 297, 2178, 594, 1683, 1485
Offset: 1

Views

Author

Labos Elemer, May 31 2002

Keywords

Examples

			n=7, a(7)=GCD[5040,405]=45.
		

Crossrefs

Cf. A055483.

Programs

  • Mathematica
    nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] ed[x_] := IntegerDigits[x] red[x_] := Reverse[IntegerDigits[x]] Table[GCD[w!, tn[red[w! ]]], {w, 1, 128}]

Formula

a(n)=A055483[n! ]

A072033 Smallest x > 0 such that gcd(2^x, A004086(2^x)) = 2^n.

Original entry on oeis.org

4, 1, 2, 3, 26, 131, 227, 301, 567, 879, 3240, 11051, 8048, 38911, 7321, 97309, 108190, 6294, 138124, 4675268, 2687104, 1336154, 5774420
Offset: 1

Views

Author

Labos Elemer, Jun 07 2002

Keywords

Comments

a(14)=7321, a(17)=6294.

Examples

			n=4: a(4)=26 because gcd(2^26, reverse(2^26)) = gcd(67108864, 46880176) = 16 = 2^n.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k=1}, While[ IntegerExponent[ GCD[2^k, FromDigits@ Reverse@ IntegerDigits[2^k]], 2] != n, k++]; k]; Array[a, 13, 0] (* Giovanni Resta, Oct 28 2019 *)

Formula

a(n) = min{x: gcd(2^x, reverse(2^x))=2^n} = min{x: A055483(x)=2^n}.
A072032(a(n)) = 2^n.

Extensions

Offset corrected, missing a(3) and a(13)-a(22) added by Giovanni Resta, Oct 28 2019
Previous Showing 11-20 of 22 results. Next