A181745
Prime numbers that are factorial differences p! -q! where p+1 and q+1 are both prime numbers.
Original entry on oeis.org
23, 719, 479001599, 265252859812191058636308479999999
Offset: 1
a(3)=479001599 because 479001599 is prime and equals 479001600-1 = A000142(12) - A000142(1) where 13 and 2 are prime numbers.
A309548
Numbers k such that sigma(k)! - 1 is prime, where sigma is A000203.
Original entry on oeis.org
2, 3, 4, 5, 6, 11, 13, 21, 29, 31, 37, 170, 180, 214, 234, 265, 362, 369, 10734, 14318, 19679, 19876, 39636, 48784, 62517, 76225, 77277, 83629, 85519, 90649, 92287
Offset: 1
2 is a term because sigma(2) = 3. 3! - 1 = 5, a prime.
6 is a term because sigma(6) = 12. 12! - 1 = 479001599, a prime.
-
isok(n) = isprime(sigma(n)!-1); \\ Michel Marcus, Aug 07 2019
-
[n for n in range(1,150) if is_prime(factorial(sigma(n))-1)]
A323579
Primes formed by using the four terminal digits of multidigit primes and whose digits are distinct, i.e., consisting of only digits 1, 3, 7, 9.
Original entry on oeis.org
3, 7, 13, 17, 19, 31, 37, 71, 73, 79, 97, 137, 139, 173, 179, 193, 197, 317, 379, 397, 719, 739, 937, 971, 1973, 3719, 3917, 7193, 9137, 9173, 9371
Offset: 1
1973 and 9371 are respectively the smallest and the largest primes formed with the four digits that can end multidigit primes.
- Chris K. Caldwell and G. L. Honaker, Jr., 9371, Prime Curios!
Cf.
A029743 (with distinct digits),
A124674 (with distinct prime digits),
A155024 (with distinct nonprime digits but with 0),
A155045 (with distinct odd digits),
A323387 (with distinct square digits),
A323391 (with distinct nonprime digits),
A323578 (with distinct digits for which parity of digits alternates).
-
With[{w = Select[Range@ 10, GCD[#, 10] == 1 &]}, Select[FromDigits /@ Permutations[w, Length@ w], PrimeQ]] (* Michael De Vlieger, Feb 03 2019 *)
Select[FromDigits/@Flatten[Permutations/@Subsets[{1,3,7,9}],1],PrimeQ]//Union (* Harvey P. Dale, Apr 20 2025 *)
A375310
Numbers k such that k!^2 + (k-1)!^2 - 1 is prime.
Original entry on oeis.org
14, 32, 58, 182, 240, 474, 824, 3018, 5977, 9088
Offset: 1
14 is a term, because 14!^2 + 13!^2 - 1 = 7600054456551997440000 + 38775788043632640000 - 1 = 7638830244595630079999 is a prime number.
-
select(k -> isprime((k^2+1)*((k-1)!)^2-1), [$1..1000]); # Robert Israel, Aug 12 2024
-
is(k) = isprime(k!^2 + (k-1)!^2 - 1);
-
from itertools import count, islice
from sympy import isprime
def A375310_gen(): # generator of terms
f = 1
for k in count(1):
if isprime((k**2+1)*f-1):
yield k
f *= k**2
A375310_list = list(islice(A375310_gen(),6)) # Chai Wah Wu, Oct 02 2024
Comments