cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A055028 Number of Gaussian primes of norm n.

Original entry on oeis.org

0, 0, 4, 0, 0, 8, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jun 09 2000

Keywords

Comments

These are the primes in the ring of integers a+bi, a and b rational integers, i = sqrt(-1).

Examples

			There are 8 Gaussian primes of norm 5, +-1 +- 2i and +-2 +- i, but only two inequivalent ones (2 +- i).
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A16.
  • L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. V.

Crossrefs

Programs

  • Maple
    A055028 := proc(n::integer)
        local c,a,b ;
        c := 0 ;
        for a from -n to n do
            if issqr(n-a^2) then
                b := sqrt(n-a^2) ;
                if GaussInt[GIprime](a+b*I) and a^2+b^2=n then
                    if b = 0 then
                        c := c+1 ; # a+i*b and a-i*b
                    else
                        c := c+2 ; # a+i*b and a-i*b
                    end if;
                end if;
            end if;
        end do:
        c ;
    end proc:
    seq( A055028(n),n=0..50) ; # R. J. Mathar, Jul 22 2021
  • Mathematica
    a[n_ /; PrimeQ[n] && Mod[n, 4] == 1] = 8; a[2] = 4; a[n_ /; (p = Sqrt[n]; PrimeQ[p] && Mod[p, 4] == 3)] = 4; a[] = 0; Table[ a[n], {n, 0, 100}] (* _Jean-François Alcover, Jul 30 2013, after Franklin T. Adams-Watters *)

Formula

a(n) = 4 * A055029(n). - Franklin T. Adams-Watters, May 05 2006

Extensions

More terms from Reiner Martin, Jul 20 2001

A121307 Products of three primes of the form 3n-1 (A003627), not necessarily distinct.

Original entry on oeis.org

8, 20, 44, 50, 68, 92, 110, 116, 125, 164, 170, 188, 212, 230, 236, 242, 275, 284, 290, 332, 356, 374, 404, 410, 425, 428, 452, 470, 506, 524, 530, 548, 575, 578, 590, 596, 605, 638, 668, 692, 710, 716, 725, 764, 782, 788, 830, 890, 902, 908, 932, 935, 956
Offset: 1

Views

Author

Jonathan Vos Post, Sep 05 2006

Keywords

Comments

It would be incorrect to call these Eisenstein 3-almost primes. For the Eisenstein primes see A055664. - N. J. A. Sloane, Feb 06 2008.

References

  • J. H. Conway and R. K. Guy, The Book of Numbers. New York: Springer-Verlag, pp. 220-223, 1996.
  • Stan Wagon, "Eisenstein Primes," Section 9.8 in Mathematica in Action. New York: W. H. Freeman, pp. 319-323, 1991.

Crossrefs

Intersection of A004612 and A014612.
Subsequence of A373589, which in turn is a subsequence of A373597.
Cf. also A055664.

Programs

  • Mathematica
    ok[n_] := Block[{f = FactorInteger@n}, Plus @@ Last /@ f == 3 && Max@ Mod[1 + First /@ f, 3] == 0]; Select[Range@ 1000, ok] (* Giovanni Resta, Jun 12 2016 *)
  • PARI
    list(lim)=my(v=List(),u=v,t); forprime(p=2,lim\4, if(p%3==2, listput(u,p))); for(i=1,#u, for(j=i,#u, if(u[i]*u[j]^2>lim, break); for(k=j,#u, t=u[i]*u[j]*u[k]; if(t>lim, break); listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017
    
  • Python
    from sympy import primerange
    from itertools import combinations_with_replacement as mc
    def aupto(limit):
        terms = [p for p in primerange(2, limit//4+1) if p%3 == 2]
        return sorted(set(a*b*c for a, b, c in mc(terms, 3) if a*b*c <= limit))
    print(aupto(957)) # Michael S. Branicky, Aug 20 2021

Extensions

Definition corrected by N. J. A. Sloane, Feb 06 2008
a(37)-a(53) from Giovanni Resta, Jun 12 2016
Name edited by Antti Karttunen, Jun 13 2024

A364869 Numbers k such that 6*k+1 is the norm of an Eisenstein prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 16, 17, 18, 20, 21, 23, 25, 26, 27, 30, 32, 33, 35, 37, 38, 40, 45, 46, 47, 48, 51, 52, 55, 56, 58, 61, 62, 63, 66, 68, 70, 72, 73, 76, 77, 81, 83, 87, 88, 90, 91, 95, 96, 100, 101, 102, 103, 105, 107, 110, 112, 115, 118, 121, 122, 123
Offset: 1

Views

Author

Jianing Song, Aug 11 2023

Keywords

Comments

Numbers k such that 6*k+1 is a prime or the square of a prime congruent to 5 modulo 6.
If p is an Eisenstein prime of norm 6*a(n)+1 (there are two up to association if a(n) is a prime, one if a(n) is the square of a prime), then for any Eisenstein integer x, we have x^a(n) == 0, 1, w, w^2, -1, -w or -w^2 (mod p), where w = (1+sqrt(-3))/2 is a primitive sixth root of unity.

Examples

			4 is a term since 6*4+1 is the norm of the Eisenstein prime 5.
		

Crossrefs

Contains 4*A024702 as a subsequence.

Programs

Formula

a(n) = (A055664(n+2) - 1)/6.

A112770 Products of pairs of terms from A003627.

Original entry on oeis.org

4, 10, 22, 25, 34, 46, 55, 58, 82, 85, 94, 106, 115, 118, 121, 142, 145, 166, 178, 187, 202, 205, 214, 226, 235, 253, 262, 265, 274, 289, 295, 298, 319, 334, 346, 355, 358, 382, 391, 394, 415, 445, 451, 454, 466, 478, 493, 502, 505, 514, 517, 526, 529, 535
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Oct 15 2005

Keywords

Comments

It would be incorrect to call these Eisenstein semiprimes. For the Eisenstein primes see A055664. - N. J. A. Sloane, Feb 06 2008. For

References

  • Conway, J. H. and Guy, R. K., The Book of Numbers. New York: Springer-Verlag, pp. 220-223, 1996.
  • Wagon, S. "Eisenstein Primes." Section 9.8 in Mathematica in Action. New York: W. H. Freeman, pp. 319-323, 1991.

Crossrefs

Formula

{a(n)} = {p*q: p and q both elements of A007645} = {p*q: p and q both of form 3*m^2 * n^2 for integers m, n}.

Extensions

Definition corrected by N. J. A. Sloane, Feb 06 2008

A120124 Smallest prime p such that p*10^n + 1 is a prime.

Original entry on oeis.org

3, 7, 3, 7, 7, 61, 3, 7, 7, 3, 19, 37, 109, 79, 97, 13, 37, 19, 73, 103, 97, 283, 157, 61, 19, 61, 1213, 3, 163, 691, 367, 163, 181, 157, 241, 3, 103, 733, 151, 283, 337, 193, 211, 163, 7, 73, 307, 61, 223, 1549, 31, 127, 13, 547, 103, 151, 193, 811, 337, 19, 1021, 151
Offset: 1

Views

Author

Alexander Adamchuk, Aug 15 2006

Keywords

Comments

All terms belong to A007645. All terms also belong to A055664. Also many terms including the first 14 smallest primes from 3 to 139 {3,7,13,19,31,37,43,61,73,79,97,103,127,139} belong tpA023203. The smallest term that differs from A023203 is 151.

Examples

			a(1) = 3 because 31 = 3*10 + 1 is the smallest prime of form p*10 + 1, where p is a prime.
a(2) = 7 because 701 = 7*100 + 1 is the smallest prime of form p*100 + 1.
		

Crossrefs

Programs

  • Maple
    Primes:= select(isprime,[$1..10^5]):
    for n from 1 to 1000 do
       for p in Primes do
          if isprime(p*10^n+1) then
            A[n]:= p
          fi
        od
    od:
    seq(A[n],n=1..1000); # Robert Israel, May 29 2014
  • Mathematica
    prs=Prime[Range[2000]];Table[i=1;While[!PrimeQ[First[Take[prs,{i}]] 10^n+1],i++];Prime[i],{n,200}] (* Harvey P. Dale, May 15 2011 *)

A134324 Number of Eisenstein-Jacobi primes whose modulus is > n and <= n+1.

Original entry on oeis.org

0, 12, 12, 12, 18, 12, 24, 12, 36, 12, 30, 24, 36, 24, 36, 24, 42, 24, 36, 48, 48, 24, 42, 36, 60, 48, 36, 60, 54, 48, 36, 60, 72, 60, 36, 60, 48, 48, 72, 72, 78, 84, 60, 60, 72, 60, 78, 84, 84, 36, 72, 84, 114, 48
Offset: 0

Views

Author

Philippe Lallouet (philip.lallouet(AT)orange.fr), Jan 30 2008, Feb 06 2008

Keywords

Crossrefs

Formula

a(n) = Sum_{k=n^2+1..(n+1)^2} A055667(k). - Rémy Sigrist, Aug 08 2018

Extensions

Data corrected and name clarified by Rémy Sigrist, Aug 08 2018
Previous Showing 21-26 of 26 results.