cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A333072 Least k such that Sum_{i=1..n} k^i / i is a positive integer.

Original entry on oeis.org

1, 2, 6, 6, 30, 10, 70, 70, 210, 168, 1848, 1848, 18018, 8580, 2574, 2574, 102102, 102102, 831402, 2771340, 3233230, 587860, 43266496, 117630786, 162249360, 145088370, 145088370, 2897310, 672175920, 672175920, 18232771830, 18232771830, 44279588730, 8886561060
Offset: 1

Views

Author

Jinyuan Wang, Mar 10 2020

Keywords

Comments

Note that the denominator of (Sum_{i=1..n} k^i/i) - k^p/p can never be divisible by p, where n/2 < p <= n. Therefore, for the expression to be an integer, such p must divide k. Thus, a(n) = k is divisible by A055773(n).

Crossrefs

Programs

  • PARI
    a(n) = {my(m = prod(i=primepi(n/2)+1, primepi(n), prime(i)), k = m); while (denominator(sum(i=2, n, k^i/i)) != 1, k += m); k; }
    
  • Python
    from sympy import primorial, lcm
    def A333072(n):
        f = 1
        for i in range(1,n+1):
            f = lcm(f,i)
        f, glist = int(f), []
        for i in range(1,n+1):
            glist.append(f//i)
        m = 1 if n < 2 else primorial(n,nth=False)//primorial(n//2,nth=False)
        k = m
        while True:
            p,ki = 0, k
            for i in range(1,n+1):
                p = (p+ki*glist[i-1]) % f
                ki = (k*ki) % f
            if p == 0:
                return k
            k += m # Chai Wah Wu, Apr 04 2020

Formula

a(n) <= A034386(n).

A056194 Characteristic cube divisor of n!: a(n) = A056191(n!).

Original entry on oeis.org

1, 1, 1, 8, 8, 1, 1, 8, 8, 1, 1, 27, 27, 216, 1000, 1000, 1000, 125, 125, 1, 9261, 74088, 74088, 343, 343, 2744, 74088, 216, 216, 125, 125, 1000, 35937000, 4492125, 12326391, 12326391, 12326391, 98611128, 8024024008, 125375375125
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e] && e > 1, p^3, 1]; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40] (* Amiram Eldar, Sep 06 2020 *)

Formula

a(n) = A056191(A000142(n)). - Amiram Eldar, Sep 06 2020

A056195 a(n) = n! divided by its characteristic cube divisor A056194.

Original entry on oeis.org

1, 2, 6, 3, 15, 720, 5040, 5040, 45360, 3628800, 39916800, 17740800, 230630400, 403603200, 1307674368, 20922789888, 355687428096, 51218989645824, 973160803270656, 2432902008176640000, 5516784599040000
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Examples

			n = 10, a(10) = 10! because g(10!) = 1.
n = 9, a(9) = 45320 because 9! = 2*2*2*2*2*2*2*3*3*5*7 and g(9!) = 2, so a(9) = 9!/8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e] && e > 1, p^3, 1]; a[n_] := n! / (Times @@ f @@@ FactorInteger[n!]); Array[a, 20] (* Amiram Eldar, Sep 06 2020 *)

Formula

The CCD of n! is the cube of g = A055229(n!) = A055230(n). So a(n) = n!/ggg = L*L*f where L = A000188(n!)/A055229(n!) = A055772(n)/A055230(n) and f = A055231(n!) = A055773(n).

A193477 Denominator(n!/floor(n/2)!^4).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 9, 9, 288, 32, 400, 400, 43200, 43200, 1058400, 70560, 18063360, 18063360, 6584094720, 6584094720, 3292047360000, 156764160000, 9484231680000, 9484231680000, 8194376171520000, 327775046860800, 27696991459737600, 1025814498508800
Offset: 0

Views

Author

Peter Luschny, Jul 30 2011

Keywords

Crossrefs

Cf. A055773.

Programs

  • Maple
    A193477 := n -> denom(n!/iquo(n,2)!^4);

Formula

a(n) = Denominator(A056040(n)^2/n!).
a(n) = Denominator(A056040(n)/floor(n/2)!^2).

A333073 Least k such that Sum_{i=1..n} (-k)^i / i is a positive integer.

Original entry on oeis.org

1, 2, 6, 6, 30, 20, 140, 140, 210, 42, 462, 462, 12012, 3432, 6006, 6006, 87516, 87516, 1108536, 3048474, 2586584, 2586584, 44618574, 44618574, 60843510, 17160990, 17160990, 14263680, 782050830, 782050830, 3806842470, 3806842470, 16830250920, 16830250920
Offset: 1

Views

Author

Jinyuan Wang, Mar 31 2020

Keywords

Comments

Note that the denominator of (Sum_{i=1..n} (-k)^i/i) - (-k)^p/p can never be divisible by p, where n/2 < p <= n. Therefore, for the expression to be an integer, such p must divide k. Thus, a(n) = k is divisible by A055773(n).

Crossrefs

Programs

  • PARI
    a(n) = {my(m = prod(i=primepi(n/2)+1, primepi(n), prime(i)), k = m); while(denominator(sum(i=2, n, (-k)^i/i)) != 1, k += m); k; }
    
  • Python
    from sympy import primorial, lcm
    def A333073(n):
        f = 1
        for i in range(1,n+1):
            f = lcm(f,i)
        f = int(f)
        glist = []
        for i in range(1,n+1):
            glist.append(f//i)
        m = 1 if n < 2 else primorial(n,nth=False)//primorial(n//2,nth=False)
        k = m
        while True:
            p,ki = 0, -k
            for i in range(1,n+1):
                p = (p+ki*glist[i-1]) % f
                ki = (-k*ki) % f
            if p == 0:
                return k
            k += m # Chai Wah Wu, Apr 02 2020

Formula

a(n) <= A034386(n).

A161887 A product of quotients of factorials.

Original entry on oeis.org

1, 2, 6, 12, 60, 120, 840, 7560, 15120, 110880, 166320, 1441440, 2882880, 10810800, 43243200, 183783600, 367567200, 2793510720, 6983776800, 58663725120, 117327450240, 299836817280, 2698531355520, 7495920432000
Offset: 1

Views

Author

Peter Luschny, Jun 21 2009

Keywords

Comments

Definition: Let b(n,k) = floor(n/2^k)! and m = log[2](n) then c(n) = product_{k=1..m} b(n,k) / b(n,k+1)^2.
a(n) is the sequence derived from c(n) by eliminating duplicates and sorting the values.
a(1) through a(19) are highly composite numbers (A002182).
The number of divisors of a(1) through a(28) are number of divisors of highly composite numbers (A002183).
A055773(floor(n/2)) is a divisor of a(n), a(n)/A055773(floor(n/2)) after eliminating duplicates and sorting starts 1,4,24,216,1440,2160,..

Crossrefs

Programs

  • Maple
    a := proc(n) local m,k; m := nops(convert(n,base,2));
    mul(iquo(n,2^k)!/iquo(n,2^(k+1))!^2,k=1..m-1) end:
    seq(a(i),i=1..50): A:=sort(convert({%},list));
  • Mathematica
    b[n_, k_] := Floor[n/2^k]!; c[n_] := Product[b[n, k]/b[n, k+1]^2, {k, 1, Log[2, n]}]; A = Array[c, 50] // DeleteDuplicates // Sort (* Jean-François Alcover, Jun 17 2019 *)

A220027 a(n) = product(i >= 0, P(n, i)^(2^i)) where P(n, i) = product(p prime, n/2^(i+1) < p <= n/2^i).

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 180, 1260, 5040, 5040, 25200, 277200, 2494800, 32432400, 227026800, 227026800, 3632428800, 61751289600, 61751289600, 1173274502400, 29331862560000, 29331862560000, 322650488160000, 7420961227680000, 601097859442080000, 601097859442080000
Offset: 0

Views

Author

Peter Luschny, Mar 30 2013

Keywords

Comments

a(n) are the partial products of A219964(n).
a(n) divides n!, n!/a(n) = 1, 1, 1, 1, 2, 2, 4, 4, 8, 72, 144, 144, 192...
The swinging factorial (A056040) divides a(n), a(n)/n$ = 1, 1, 1, 1, 2,...
The primorial of n (A034386) divides a(n), a(n)/n# = 1, 1, 1, 1, 2, 2, 6,..
If p^k is the largest power of a prime dividing a(n) then k is 2^n for some n >= 0.
a(n) / A055773(n) is the largest square dividing a(n), a(n) / A055773(n) = A008833(a(n)).

Crossrefs

Cf. A055773.

Programs

  • Maple
    a := proc(n) local k; `if`(n < 2, 1,
    mul(k, k = select(isprime, [$iquo(n, 2)+1..n]))*a(iquo(n,2))^2) end:
    seq(a(i), i=0..25);
  • Sage
    def a(n) :
        if n < 2 : return 1
        return mul(k for k in prime_range(n//2+1,n+1))*a(n//2)^2
    [a(n) for n in (0..25)]

A370971 A008336(n) is divisible by the product of the primes p such that n/2 <= p < n; a(n) is the quotient.

Original entry on oeis.org

1, 1, 1, 1, 8, 8, 4, 4, 32, 288, 144, 144, 12, 12, 6, 90, 1440, 1440, 80, 80, 4, 84, 42, 42, 1008, 25200, 12600, 340200, 12150, 12150, 405, 405, 12960, 427680, 213840, 7484400, 207900, 207900, 103950, 4054050, 162162000, 162162000, 3861000, 3861000, 87750, 1950, 975, 975, 46800, 2293200, 45864, 2339064, 44982
Offset: 1

Views

Author

N. J. A. Sloane, Apr 13 2024

Keywords

Examples

			For n= 7, A008336(7) = 20. The only prime with 3.5 <= p < 7 is 5, so a(7) = 20/5 = 4.
For n= 8, A008336(7) = 140. The only primes with 4 <= p < 8 are 5 and 7, so a(8) = 140/(5*7) = 4.
		

Crossrefs

Cf. A008336, A055773 (note that A055773 has offset 0).

Formula

a(n) = A008336(n)/A055773(n-1).

A111866 Divide n! repeatedly by i! for i from floor(n/2) down through 2; a(n) = remaining quotient.

Original entry on oeis.org

1, 1, 2, 6, 3, 15, 5, 35, 35, 105, 7, 77, 77, 1001, 143, 429, 2145, 36465, 12155, 230945, 46189, 323323, 29393, 676039, 676039, 16900975, 1300075, 2340135, 334305, 9694845, 215441, 6678671, 100180065, 3305942145, 64822395, 2268783825
Offset: 0

Views

Author

Jon Perry, Nov 23 2005

Keywords

Examples

			a(9): 9!/(4!*4!*3!) = 105.
		

Crossrefs

Cf. A055773.

Programs

  • Mathematica
    f[n_] := Block[{k = Floor[n/2], m = n!}, While[k > 1, While[ Mod[m, k! ] == 0, m /= k! ]; k-- ]; m]; Table[ f[n], {n, 0, 35}] (* Robert G. Wilson v *)
  • PARI
    a(n)=c=n!;forstep(d=floor(n/2),2,-1, while (c%(d!)==0,c/=d!));c

Extensions

More terms from Robert G. Wilson v, Nov 25 2005
Previous Showing 11-19 of 19 results.