A308645
Expansion of e.g.f. exp(1 + x - exp(2*x)).
Original entry on oeis.org
1, -1, -3, 3, 41, 87, -571, -5701, -14575, 156655, 2094925, 9148851, -63364423, -1474212665, -11494853995, 10945362411, 1520718442785, 20719421344991, 100137575499165, -1638818071763869, -45333849658449847, -512404024891840969, -577060092568365467, 99142586163648127771
Offset: 0
-
nmax = 23; CoefficientList[Series[Exp[1 + x - Exp[2 x]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Exp[1] Sum[(-1)^k (2 k + 1)^n/k!, {k, 0, Infinity}], {n, 0, 23}]
Table[Sum[Binomial[n, k] 2^k BellB[k, -1], {k, 0, n}], {n, 0, 23}]
A336635
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(BesselI(0,2*sqrt(x))^2 - 1).
Original entry on oeis.org
1, 2, 14, 176, 3470, 96792, 3590048, 169686792, 9903471502, 696692504552, 57958925154584, 5614276497440712, 625153195794408608, 79159558899671117896, 11293672011942106846808, 1801015209162807119535216, 318805481931592799427378062
Offset: 0
-
nmax = 16; CoefficientList[Series[Exp[BesselI[0, 2 Sqrt[x]]^2 - 1], {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 Binomial[2 k, k] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]
A347432
E.g.f.: exp( exp(x) * (exp(x) - 1 - x) ).
Original entry on oeis.org
1, 0, 1, 4, 14, 66, 397, 2626, 18797, 148238, 1281134, 11943790, 118998365, 1262189748, 14203022537, 168835162632, 2111832477426, 27708387132906, 380355066174121, 5449577398256414, 81316095965242989, 1261149374033472626, 20293627142875917978, 338263983223664609198
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*(2^j-j-1), j=1..n))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Sep 02 2021
-
nmax = 23; CoefficientList[Series[Exp[Exp[x] (Exp[x] - 1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] (2^k - k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
A347434
E.g.f.: exp( exp(x) * (exp(x) - 1 - x - x^2 / 2) ).
Original entry on oeis.org
1, 0, 0, 1, 5, 16, 52, 274, 1990, 14354, 99704, 730225, 6061013, 56151330, 551040830, 5597109717, 59324775741, 664973687438, 7891158217876, 98253448977890, 1273082291906394, 17124091446383666, 239333235895599762, 3476600533730954761, 52394273274018321421
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*(2^j-j*(j+1)/2-1), j=1..n))
end:
seq(a(n), n=0..24); # Alois P. Heinz, Sep 02 2021
-
nmax = 24; CoefficientList[Series[Exp[Exp[x] (Exp[x] - 1 - x - x^2/2)], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] (2^k - 1 - k (k + 1)/2) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
A347435
E.g.f.: exp( exp(x) * (exp(x) - 1 - x - x^2 / 2 - x^3 / 6) ).
Original entry on oeis.org
1, 0, 0, 0, 1, 6, 22, 64, 198, 1138, 10004, 83920, 617993, 4226028, 30103686, 251883012, 2490287821, 26456763078, 281404300348, 2966101610920, 31877462564554, 362624252399566, 4437794875670072, 57612897938229380, 773900876490016325, 10599854900351622752
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*(2^j-j^3/6-5*j/6-1), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Sep 02 2021
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] (Exp[x] - 1 - x - x^2/2 - x^3/6)], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] (2^k - 1 - k (k^2 + 5)/6) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 25}]
A351891
Expansion of e.g.f. exp( sinh(sqrt(2)*x) / sqrt(2) ).
Original entry on oeis.org
1, 1, 1, 3, 9, 25, 105, 443, 1969, 10609, 57265, 338547, 2190969, 14498185, 104277849, 784965803, 6150938593, 51229928929, 440694547681, 3967606065891, 37247506348905, 361022009762809, 3645855348771273, 38001754007842715, 409302848055407761, 4558828622414199121
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[Sinh[Sqrt[2] x]/Sqrt[2]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, 2 k] 2^k a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
A055883
Exponential transform of Pascal's triangle A007318.
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 5, 15, 15, 5, 15, 60, 90, 60, 15, 52, 260, 520, 520, 260, 52, 203, 1218, 3045, 4060, 3045, 1218, 203, 877, 6139, 18417, 30695, 30695, 18417, 6139, 877, 4140, 33120, 115920, 231840, 289800, 231840, 115920, 33120, 4140, 21147
Offset: 0
1;
1, 1;
2, 4, 2;
5, 15, 15, 5;
15, 60, 90, 60, 15;
...
-
T[ n_, k_] := Binomial[n, k] * BellB[n]; (* Michael Somos, Apr 09 2025 *)
-
T(n, k) = binomial(n, k) * sum(j=0, n, stirling(n, j, 2)); /* Michael Somos, Apr 09 2025 */
A292913
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(exp(k*x)-1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 8, 5, 0, 1, 4, 18, 40, 15, 0, 1, 5, 32, 135, 240, 52, 0, 1, 6, 50, 320, 1215, 1664, 203, 0, 1, 7, 72, 625, 3840, 12636, 12992, 877, 0, 1, 8, 98, 1080, 9375, 53248, 147987, 112256, 4140, 0, 1, 9, 128, 1715, 19440, 162500, 831488, 1917999, 1059840, 21147, 0
Offset: 0
E.g.f. of column k: A_k(x) = 1 + k*x/1! + 2*k^2*x^2/2! + 5*k^3*x^3/3! + 15*k^4 x^4/4! + 52*k^5*x^5/5! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 8, 18, 32, 50, ...
0, 5, 40, 135, 320, 625, ...
0, 15, 240, 1215, 3840, 9375, ...
0, 52, 1664, 12636, 53248, 162500, ...
-
A:= (n, k)-> k^n * combinat[bell](n):
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 26 2017
-
Table[Function[k, n! SeriesCoefficient[Exp[Exp[k x] - 1], {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-((-1)^(i + 1) (i - 1) + i + 3) k x/4, 1, {i, 0, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Comments