cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 73 results. Next

A336342 Number of ways to choose a partition of each part of a strict composition of n.

Original entry on oeis.org

1, 1, 2, 7, 11, 29, 81, 155, 312, 708, 1950, 3384, 7729, 14929, 32407, 81708, 151429, 305899, 623713, 1234736, 2463743, 6208978, 10732222, 22487671, 43000345, 86573952, 160595426, 324990308, 744946690, 1336552491, 2629260284, 5050032692, 9681365777
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.
Is there a simple generating function?

Examples

			The a(1) = 1 through a(4) = 11 ways:
  (1)  (2)    (3)        (4)
       (1,1)  (2,1)      (2,2)
              (1,1,1)    (3,1)
              (1),(2)    (1),(3)
              (2),(1)    (2,1,1)
              (1),(1,1)  (3),(1)
              (1,1),(1)  (1,1,1,1)
                         (1),(2,1)
                         (2,1),(1)
                         (1),(1,1,1)
                         (1,1,1),(1)
		

Crossrefs

Multiset partitions of partitions are A001970.
Strict compositions are counted by A032020, A072574, and A072575.
Splittings of partitions are A323583.
Splittings of partitions with distinct sums are A336131.
Partitions:
- Partitions of each part of a partition are A063834.
- Compositions of each part of a partition are A075900.
- Strict partitions of each part of a partition are A270995.
- Strict compositions of each part of a partition are A336141.
Strict partitions:
- Partitions of each part of a strict partition are A271619.
- Compositions of each part of a strict partition are A304961.
- Strict partitions of each part of a strict partition are A279785.
- Strict compositions of each part of a strict partition are A336142.
Compositions:
- Partitions of each part of a composition are A055887.
- Compositions of each part of a composition are A133494.
- Strict partitions of each part of a composition are A304969.
- Strict compositions of each part of a composition are A307068.
Strict compositions:
- Partitions of each part of a strict composition are A336342.
- Compositions of each part of a strict composition are A336127.
- Strict partitions of each part of a strict composition are A336343.
- Strict compositions of each part of a strict composition are A336139.

Programs

  • Mathematica
    Table[Length[Join@@Table[Tuples[IntegerPartitions/@ctn],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}]],{n,0,10}]
  • PARI
    seq(n)={[subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, 1 + y*x^k*numbpart(k) + O(x*x^n)))]} \\ Andrew Howroyd, Apr 16 2021

Formula

G.f.: Sum_{k>=0} k! * [y^k](Product_{j>=1} 1 + y*x^j*A000041(j)). - Andrew Howroyd, Apr 16 2021

A356932 Number of multiset partitions of integer partitions of n such that all blocks have odd size.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 24, 42, 74, 130, 224, 383, 653, 1100, 1846, 3079, 5104, 8418, 13827, 22592, 36774, 59613, 96271, 154908, 248441, 397110, 632823, 1005445, 1592962, 2516905, 3966474, 6235107, 9777791, 15297678, 23880160, 37196958, 57819018, 89691934, 138862937
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 13 multiset partitions:
  {1}  {2}     {3}        {4}           {5}
       {1}{1}  {111}      {112}         {113}
               {1}{2}     {1}{3}        {122}
               {1}{1}{1}  {2}{2}        {1}{4}
                          {1}{111}      {2}{3}
                          {1}{1}{2}     {11111}
                          {1}{1}{1}{1}  {1}{112}
                                        {2}{111}
                                        {1}{1}{3}
                                        {1}{2}{2}
                                        {1}{1}{111}
                                        {1}{1}{1}{2}
                                        {1}{1}{1}{1}{1}
		

Crossrefs

Partitions with odd multiplicities are counted by A055922.
Odd-length multisets are counted by A000302, A027193, A058695, ranked by A026424.
Other types: A050330, A356933, A356934, A356935.
Other conditions: A001970, A006171, A007294, A089259, A107742, A356941.
A000041 counts integer partitions, strict A000009.
A001055 counts factorizations.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],OddQ[Times@@Length/@#]&]],{n,0,8}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    seq(n) = {my(u=Vec(P(n,1)-P(n,-1))/2); Vec(1/prod(k=1, n, (1 - x^k + O(x*x^n))^u[k])) } \\ Andrew Howroyd, Dec 30 2022

Formula

G.f.: 1/Product_{k>=1} (1 - x^k)^A027193(k). - Andrew Howroyd, Dec 30 2022

Extensions

Terms a(13) and beyond from Andrew Howroyd, Dec 30 2022

A375134 Number of integer partitions of n whose maximal anti-runs have distinct minima.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 6, 8, 11, 12, 18, 21, 28, 33, 43, 52, 66, 78, 98, 116, 145, 171, 209, 247, 300, 352, 424, 499, 595, 695, 826, 963, 1138, 1322, 1553, 1802, 2106, 2435, 2835, 3271, 3795, 4365, 5046, 5792, 6673, 7641, 8778, 10030, 11490, 13099, 14968, 17030
Offset: 0

Views

Author

Gus Wiseman, Aug 14 2024

Keywords

Comments

These are partitions with no part appearing more than twice and with the least part appearing only once.
Also the number of reversed integer partitions of n whose maximal anti-runs have distinct minima.

Examples

			The partition y = (6,5,5,4,3,3,2,1) has maximal anti-runs ((6,5),(5,4,3),(3,2,1)), with minima (5,3,1), so y is counted under a(29).
The a(1) = 1 through a(9) = 11 partitions:
  (1)  (2)  (3)   (4)   (5)    (6)    (7)    (8)     (9)
            (12)  (13)  (14)   (15)   (16)   (17)    (18)
                        (23)   (24)   (25)   (26)    (27)
                        (122)  (123)  (34)   (35)    (36)
                                      (124)  (125)   (45)
                                      (133)  (134)   (126)
                                             (233)   (135)
                                             (1223)  (144)
                                                     (234)
                                                     (1224)
                                                     (1233)
		

Crossrefs

Includes all strict partitions A000009.
For identical instead of distinct leaders we have A115029.
A version for compositions instead of partitions is A374518, ranks A374638.
For minima instead of maxima we have A375133, ranks A375402.
These partitions have ranks A375398.
The complement is counted by A375404, ranks A375399.
A000041 counts integer partitions.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts integer compositions.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums A374706.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@Min/@Split[#,UnsameQ]&]],{n,0,30}]
  • PARI
    A_x(N) = {my(x='x+O('x^N), f=1+sum(i=1,N,(x^i)*prod(j=i+1,N-i,(1-x^(3*j))/(1-x^j)))); Vec(f)}
    A_x(51) \\ John Tyler Rascoe, Aug 21 2024

Formula

G.f.: 1 + Sum_{i>0} (x^i * Product_{j>i} (1-x^(3*j))/(1-x^j)). - John Tyler Rascoe, Aug 21 2024

A356065 Squarefree numbers whose prime indices are all prime-powers.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 21, 23, 31, 33, 35, 41, 51, 53, 55, 57, 59, 67, 69, 77, 83, 85, 93, 95, 97, 103, 105, 109, 115, 119, 123, 127, 131, 133, 155, 157, 159, 161, 165, 177, 179, 187, 191, 201, 205, 209, 211, 217, 227, 231, 241, 249, 253, 255, 265, 277
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2022

Keywords

Examples

			105 has prime indices {2,3,4}, all three of which are prime-powers, so 105 is in the sequence.
		

Crossrefs

The multiplicative version (factorizations) is A050361, non-strict A000688.
Heinz numbers of the partitions counted by A054685, with 1's A106244, non-strict A023894, non-strict with 1's A023893.
Counting twice-partitions of this type gives A279786, non-strict A279784.
Counting twice-factorizations gives A295935, non-strict A296131.
These are the odd products of distinct elements of A302493.
Allowing prime index 1 gives A302496, non-strict A302492.
The case of primes (instead of prime-powers) is A302590, non-strict A076610.
These are the squarefree positions of 1's in A355741.
This is the squarefree case of A355743, complement A356066.
A001222 counts prime-power divisors.
A005117 lists the squarefree numbers.
A034699 gives maximal prime-power divisor.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A355742 chooses a prime-power divisor of each prime index.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SquareFreeQ[#]&&And@@PrimePowerQ/@primeMS[#]&]

Formula

Intersection of A005117 and A355743.

A358908 Number of finite sequences of distinct integer partitions with total sum n and weakly decreasing lengths.

Original entry on oeis.org

1, 1, 2, 6, 10, 23, 50, 95, 188, 378, 747, 1414, 2739, 5179, 9811, 18562, 34491, 64131, 118607, 218369, 400196, 731414, 1328069, 2406363, 4346152, 7819549, 14027500, 25090582, 44749372, 79586074, 141214698, 249882141, 441176493, 777107137, 1365801088, 2395427040, 4192702241
Offset: 0

Views

Author

Gus Wiseman, Dec 09 2022

Keywords

Examples

			The a(1) = 1 through a(4) = 10 sequences:
  ((1))  ((2))   ((3))      ((4))
         ((11))  ((21))     ((22))
                 ((111))    ((31))
                 ((1)(2))   ((211))
                 ((2)(1))   ((1111))
                 ((11)(1))  ((1)(3))
                            ((3)(1))
                            ((11)(2))
                            ((21)(1))
                            ((111)(1))
		

Crossrefs

This is the distinct case of A055887 with weakly decreasing lengths.
This is the distinct case is A141199.
The case of distinct lengths also is A358836.
This is the case of A358906 with weakly decreasing lengths.
A000041 counts integer partitions, strict A000009.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all distinct Omegas.
A358912 counts sequences of partitions with distinct lengths.
A358914 counts twice-partitions into distinct strict partitions.

Programs

  • Mathematica
    ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
    Table[Length[Select[ptnseq[n],UnsameQ@@#&&GreaterEqual@@Length/@#&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    R(n,v) = {[subst(serlaplace(p), y, 1) | p<-Vec(prod(k=1, #v, (1 + y*x^k + O(x*x^n))^v[k] ))]}
    seq(n) = {my(g=P(n,y)); Vec(prod(k=1, n, Ser(R(n, Vec(polcoef(g, k, y), -n)))  ))} \\ Andrew Howroyd, Dec 31 2022

Extensions

Terms a(16) and beyond from Andrew Howroyd, Dec 31 2022

A382204 Number of normal multiset partitions of weight n into constant blocks with a common sum.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 7, 5, 8, 8, 10, 8, 15, 9, 14, 15, 17, 13, 22, 14, 25, 21, 23, 19, 34, 24, 29, 28, 37, 27, 45, 29, 44, 38, 43, 43, 59, 40, 51, 48, 69, 48, 71, 52, 73, 69, 72, 61, 93, 72, 91, 77, 99, 78, 105, 95, 119, 95, 113, 96, 146, 107, 126, 123, 151, 130
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(6) = 7 multiset partitions:
  {1} {11}   {111}     {1111}       {11111}         {111111}
      {1}{1} {2}{11}   {11}{11}     {2}{11}{11}     {111}{111}
             {1}{1}{1} {2}{2}{11}   {2}{2}{2}{11}   {22}{1111}
                       {1}{1}{1}{1} {1}{1}{1}{1}{1} {11}{11}{11}
                                                    {2}{2}{11}{11}
                                                    {2}{2}{2}{2}{11}
                                                    {1}{1}{1}{1}{1}{1}
The a(1) = 1 through a(7) = 5 factorizations:
  2  4    8      16       32         64           128
     2*2  3*4    4*4      3*4*4      8*8          3*4*4*4
          2*2*2  3*3*4    3*3*3*4    9*16         3*3*3*4*4
                 2*2*2*2  2*2*2*2*2  4*4*4        3*3*3*3*3*4
                                     3*3*4*4      2*2*2*2*2*2*2
                                     3*3*3*3*4
                                     2*2*2*2*2*2
		

Crossrefs

Without a common sum we have A055887.
Twice-partitions of this type are counted by A279789.
Without constant blocks we have A326518.
For distinct block-sums and strict blocks we have A381718.
Factorizations of this type are counted by A381995.
For distinct instead of equal block-sums we have A382203.
For strict instead of constant blocks we have A382429.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count multiset partitions of prime indices, strict A045778.
A089259 counts set multipartitions of integer partitions.
A255906 counts normal multiset partitions, row sums of A317532.
A321469 counts multiset partitions with distinct block-sums, ranks A326535.
Normal multiset partitions: A035310, A304969, A356945.
Set multipartitions: A116540, A270995, A296119, A318360.
Set multipartitions with distinct sums: A279785, A381806, A381870.
Constant blocks with distinct sums: A381635, A381636, A381716.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],SameQ@@Total/@#&&And@@SameQ@@@#&]&/@allnorm[n])],{n,0,5}]
  • PARI
    h(s,x)=my(t=0,p=1,k=1);while(s%k==0,p*=1/(1-x^(s/k))-1;t+=p;k+=1);t
    lista(n)=Vec(1+sum(s=1,n,h(s,x+O(x*x^n)))) \\ Christian Sievers, Apr 05 2025

Formula

G.f.: 1 + Sum_{s>=1} Sum_{k=1..A055874(s)} Product_{v=1..k} (1/(1-x^(s/v)) - 1). - Christian Sievers, Apr 05 2025

Extensions

Terms a(16) and beyond from Christian Sievers, Apr 04 2025

A358905 Number of sequences of integer partitions with total sum n that are rectangular, meaning all lengths are equal.

Original entry on oeis.org

1, 1, 3, 6, 13, 24, 49, 91, 179, 341, 664, 1280, 2503, 4872, 9557, 18750, 36927, 72800, 143880, 284660, 564093, 1118911, 2221834, 4415417, 8781591, 17476099, 34799199, 69327512, 138176461, 275503854, 549502119, 1096327380, 2187894634, 4367310138, 8719509111
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(0) = 1 through a(4) = 13 sequences:
  ()  ((1))  ((2))     ((3))        ((4))
             ((11))    ((21))       ((22))
             ((1)(1))  ((111))      ((31))
                       ((1)(2))     ((211))
                       ((2)(1))     ((1111))
                       ((1)(1)(1))  ((1)(3))
                                    ((2)(2))
                                    ((3)(1))
                                    ((11)(11))
                                    ((1)(1)(2))
                                    ((1)(2)(1))
                                    ((2)(1)(1))
                                    ((1)(1)(1)(1))
		

Crossrefs

The case of set partitions is A038041.
The version for weakly decreasing lengths is A141199, strictly A358836.
For equal sums instead of lengths we have A279787.
The case of twice-partitions is A306319, distinct A358830.
The unordered version is A319066.
The case of plane partitions is A323429.
The case of constant sums also is A358833.
A055887 counts sequences of partitions with total sum n.
A281145 counts same-trees.
A319169 counts partitions with constant Omega, ranked by A320324.
A358911 counts compositions with constant Omega, distinct A358912.

Programs

  • Mathematica
    ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
    Table[Length[Select[ptnseq[n],SameQ@@Length/@#&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    seq(n) = {my(g=P(n,y)); Vec(1 + sum(k=1, n, 1/(1 - polcoef(g, k, y)) - 1))} \\ Andrew Howroyd, Dec 31 2022

Formula

G.f.: 1 + Sum_{k>=1} (1/(1 - [y^k]P(x,y)) - 1) where P(x,y) = 1/Product_{k>=1} (1 - y*x^k). - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(16) and beyond from Andrew Howroyd, Dec 31 2022

A358906 Number of finite sequences of distinct integer partitions with total sum n.

Original entry on oeis.org

1, 1, 2, 7, 13, 35, 87, 191, 470, 1080, 2532, 5778, 13569, 30715, 69583, 160386, 360709, 814597, 1824055, 4102430, 9158405, 20378692, 45215496, 100055269, 221388993, 486872610, 1069846372, 2343798452, 5127889666, 11186214519, 24351106180, 52896439646
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(1) = 1 through a(4) = 13 sequences:
  ((1))  ((2))   ((3))      ((4))
         ((11))  ((21))     ((22))
                 ((111))    ((31))
                 ((1)(2))   ((211))
                 ((2)(1))   ((1111))
                 ((1)(11))  ((1)(3))
                 ((11)(1))  ((3)(1))
                            ((11)(2))
                            ((1)(21))
                            ((2)(11))
                            ((21)(1))
                            ((1)(111))
                            ((111)(1))
		

Crossrefs

This is the case of A055887 with distinct partitions.
The unordered version is A261049.
The case of twice-partitions is A296122.
The case of distinct sums is A336342, constant sums A279787.
The version for sequences of compositions is A358907.
The case of weakly decreasing lengths is A358908.
The case of distinct lengths is A358912.
The version for strict partitions is A358913, distinct case of A304969.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all distinct Omegas.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
          binomial(combinat[numbpart](i), j)*b(n-i*j, i-1, p+j), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..32);  # Alois P. Heinz, Feb 13 2024
  • Mathematica
    ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
    Table[Length[Select[ptnseq[n],UnsameQ@@#&]],{n,0,10}]

Formula

a(n) = Sum_{k} A330463(n,k) * k!.

A375401 Number of integer partitions of n whose maximal anti-runs do not all have different maxima.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 6, 7, 12, 16, 25, 33, 48, 63, 88, 116, 157, 204, 272, 349, 456, 581, 749, 946, 1205, 1511, 1904, 2371, 2960, 3661, 4538, 5577, 6862, 8389, 10257, 12472, 15164, 18348, 22192, 26731, 32177, 38593, 46254, 55256, 65952, 78500, 93340, 110706
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2024

Keywords

Comments

An anti-run is a sequence with no adjacent equal terms. The maxima of maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the greatest term of each.

Examples

			The partition y = (3,2,2,1) has maximal ant-runs ((3,2),(2,1)), with maxima (3,2), so y is not counted under a(8).
The a(2) = 1 through a(8) = 12 partitions:
  (11)  (111)  (22)    (221)    (33)      (331)      (44)
               (1111)  (2111)   (222)     (2221)     (332)
                       (11111)  (2211)    (4111)     (2222)
                                (3111)    (22111)    (3311)
                                (21111)   (31111)    (5111)
                                (111111)  (211111)   (22211)
                                          (1111111)  (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

For identical instead of distinct we have A239955, ranks A073492.
The complement is counted by A375133, ranks A375402.
The complement for minima instead of maxima is A375134, ranks A375398.
These partitions have Heinz numbers A375403.
For minima instead of maxima we have A375404, ranks A375399.
The reverse for identical instead of distinct is A375405, ranks A375397.
A000041 counts integer partitions, strict A000009.
A003242 counts anti-run compositions, ranks A333489.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums A374706.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Max/@Split[#,UnsameQ]&]],{n,0,30}]

A375404 Number of integer partitions of n whose minima of maximal anti-runs are not all different.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 7, 9, 14, 19, 30, 38, 56, 73, 102, 133, 179, 231, 307, 392, 511, 647, 831, 1046, 1328, 1658, 2084, 2586, 3219, 3970, 4909, 6016, 7386, 9005, 10988, 13330, 16175, 19531, 23580, 28350, 34067, 40788, 48809, 58215, 69383, 82461, 97917, 115976
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2024

Keywords

Comments

An anti-run is a sequence with no adjacent equal terms. The minima of maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the least term of each.
Also the number of reversed integer partitions of n such that the minima of maximal anti-runs are not all different.

Examples

			The a(0) = 0 through a(8) = 14 reversed partitions:
  .  .  (11)  (111)  (22)    (113)    (33)      (115)      (44)
                     (112)   (1112)   (114)     (223)      (116)
                     (1111)  (11111)  (222)     (1114)     (224)
                                      (1113)    (1123)     (1115)
                                      (1122)    (1222)     (1124)
                                      (11112)   (11113)    (1133)
                                      (111111)  (11122)    (2222)
                                                (111112)   (11114)
                                                (1111111)  (11123)
                                                           (11222)
                                                           (111113)
                                                           (111122)
                                                           (1111112)
                                                           (11111111)
		

Crossrefs

The complement for maxima instead of minima is A375133, ranks A375402.
The complement is counted by A375134, ranks A375398.
These partitions are ranked by A375399.
For maxima instead of minima we have A375401, ranks A375403.
For identical instead of distinct we have A375405, ranks A375397.
A000041 counts integer partitions, strict A000009.
A003242 counts anti-run compositions, ranks A333489.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums A374706.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Min/@Split[#,UnsameQ]&]],{n,0,30}]
Previous Showing 21-30 of 73 results. Next