cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A056463 Number of primitive (aperiodic) palindromes using exactly two different symbols.

Original entry on oeis.org

0, 0, 2, 2, 6, 4, 14, 12, 28, 24, 62, 54, 126, 112, 246, 240, 510, 476, 1022, 990, 2030, 1984, 4094, 4020, 8184, 8064, 16352, 16254, 32766, 32484, 65534, 65280, 131006, 130560, 262122, 261576, 524286, 523264, 1048446, 1047540, 2097150, 2094988, 4194302, 4192254
Offset: 1

Views

Author

Keywords

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 2 of A327873.

Programs

  • PARI
    seq(n)={Vec(sum(k=1, n\3, moebius(k)*2*x^(3*k)/((1 - 2*x^(2*k))*(1 - x^k)) + O(x*x^n)), -n)} \\ Andrew Howroyd, Sep 29 2019
    
  • Python
    from sympy import mobius, divisors
    def A056463(n): return sum(mobius(n//d)*((1<<(d+1>>1))-2) for d in divisors(n, generator=True)) # Chai Wah Wu, Feb 18 2024

Formula

a(n) = Sum_{d|n} mu(d)*A056453(n/d).
G.f.: Sum_{k>=1} mu(k)*2*x^(3*k)/((1 - 2*x^(2*k))*(1 - x^k)). - Andrew Howroyd, Sep 29 2019

Extensions

Terms a(32) and beyond from Andrew Howroyd, Sep 28 2019

A285612 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 62", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 1, 10, 10, 110, 110, 1110, 1110, 11110, 11110, 111110, 111110, 1111110, 1111110, 11111110, 11111110, 111111110, 111111110, 1111111110, 1111111110, 11111111110, 11111111110, 111111111110, 111111111110, 1111111111110, 1111111111110, 11111111111110
Offset: 0

Views

Author

Robert Price, Apr 22 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 62; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

Formula

Conjectures from Colin Barker, Apr 23 2017: (Start)
G.f.: (1 - x^2 + 10*x^4) / ((1 - x)*(1 - 10*x^2)).
a(n) = 10*(10^(n/2) - 1)/9 for n>1 and even.
a(n) = (10^((n+1)/2) - 10)/9 for n>1 and odd.
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n>2.
(End)

A285613 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 62", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 10, 10, 100, 1100, 11000, 111000, 1110000, 11110000, 111100000, 1111100000, 11111000000, 111111000000, 1111110000000, 11111110000000, 111111100000000, 1111111100000000, 11111111000000000, 111111111000000000, 1111111110000000000, 11111111110000000000
Offset: 0

Views

Author

Robert Price, Apr 22 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 62; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

Formula

Conjectures from Colin Barker, Apr 23 2017: (Start)
G.f.: (1 - 100*x^2 + 1000*x^4) / ((1 - 10*x)*(1 - 10*x^2)).
a(n) = (10^n - 10^(n/2)) / 9 for n>1 and even.
a(n) = (10^n - 10^(n/2+1/2)) / 9 for n>1 and odd.
a(n) = 10*a(n-1) + 10*a(n-2) - 100*a(n-3) for n>2.
(End)

A321434 Triangle read by rows; T(n,k) is the number of achiral rows of n colors using exactly k colors.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 6, 6, 0, 1, 6, 6, 0, 1, 14, 36, 24, 0, 1, 14, 36, 24, 0, 1, 30, 150, 240, 120, 0, 1, 30, 150, 240, 120, 0, 1, 62, 540, 1560, 1800, 720, 0, 1, 62, 540, 1560, 1800, 720, 0, 1, 126, 1806, 8400, 16800, 15120, 5040, 0, 1, 126, 1806, 8400, 16800, 15120, 5040
Offset: 0

Views

Author

Robert A. Russell, Nov 09 2018

Keywords

Comments

Each zero in the data is the beginning of a new row.
Same as A131689, with rows (except for the first) repeated. - Joerg Arndt, Sep 08 2019

Examples

			The triangle begins with T(0,0):
1
0 1
0 1
0 1   2
0 1   2
0 1   6     6
0 1   6     6
0 1  14    36     24
0 1  14    36     24
0 1  30   150    240    120
0 1  30   150    240    120
0 1  62   540   1560   1800    720
0 1  62   540   1560   1800    720
0 1 126  1806   8400  16800   15120    5040
0 1 126  1806   8400  16800   15120    5040
0 1 254  5796  40824 126000  191520  141120   40320
0 1 254  5796  40824 126000  191520  141120   40320
0 1 510 18150 186480 834120 1905120 2328480 1451520 362880
For T(7,2)=14, the rows are AAABAAA, AABABAA, AABBBAA, ABAAABA, ABABABA, ABBABBA, ABBBBBA, BAAAAAB, BAABAAB, BABABAB, BABBBAB, BBAAABB, BBABABB, and BBBABBB.
		

Crossrefs

Cf. A019538 (oriented), A305621 (unoriented), A305622 (chiral).
Cf. A131689.

Programs

  • Mathematica
    Table[k! StirlingS2[Ceiling[n/2], k], {n, 0, 18}, {k, 0, (n+1)/2}] // Flatten

Formula

T(n,k) = k!*S2(ceiling(n/2),k), where S2 is the Stirling subset number A008277.
Previous Showing 11-14 of 14 results.