cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A141284 a(n) = (p_max - 1)*...*p*...*(p_min + 2), where p_max*...*p*...*p_min = k(n) = n-th composite.

Original entry on oeis.org

4, 8, 8, 10, 16, 16, 24, 20, 16, 24, 32, 30, 40, 32, 28, 48, 30, 48, 48, 32, 50, 64, 42, 48, 72, 60, 64, 72, 80, 60, 88, 64, 54, 80, 80, 96, 72, 70, 96, 90, 112, 96, 120, 90, 64, 84, 120, 128, 110, 120, 96, 144, 100, 144, 90, 144, 128, 90, 160, 144, 112, 168, 140, 160
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 08 2008

Keywords

Comments

In the prime factorization of the n-th composite, replace one instance of the largest prime factor A052369(n) with A052369(n)-1 and replace one instance of the smallest prime factor A056608(n) with A056608(n)+2.

Examples

			For n=1, k(1) = 4 = (p_max=2)*(p_min=2), so a(1) = (2-1)*(2+2) = 1*4 = 4;
for n=2, k(2) = 6 = (p_max=3)*(p_min=2), so a(2) = (3-1)*(2+2) = 2*4 = 8;
for n=3, k(3) = 8 = (p_max=2)*(p=2)*(p_min=2), so a(3) = (2-1)*2*(2+2) = 1*2*4 = 8; etc.
		

Crossrefs

Cf. A002808.

Programs

  • Mathematica
    Map[Times @@ Flatten[{#[[1]] + 2, #[[2 ;; -2]], #[[-1]] - 1}] &@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]] &, Select[Range[120], CompositeQ]] (* Michael De Vlieger, Jan 25 2023 *)

Formula

a(n) = A002808(n)*(A052369(n)-1)*(A056608(n)+2)/(A052369(n)*A056608(n)).

Extensions

Definition and examples corrected and entries checked by R. J. Mathar, Mar 29 2010
Simplified by Jon E. Schoenfield, Jan 25 2023

A161986 a(n) = k+r where k is composite(n) and r is (largest prime divisor of k) mod (smallest prime divisor of k).

Original entry on oeis.org

4, 7, 8, 9, 11, 13, 15, 17, 16, 19, 21, 22, 23, 25, 25, 27, 27, 29, 31, 32, 35, 35, 37, 37, 39, 40, 41, 43, 45, 47, 47, 49, 49, 51, 53, 53, 55, 56, 57, 58, 59, 61, 63, 64, 64, 68, 67, 69, 71, 71, 73, 75, 77, 77, 81, 79, 81, 81, 83, 85, 87, 87, 89, 89, 91, 97, 93, 94, 95, 99, 97
Offset: 1

Views

Author

Klaus Brockhaus, Jun 23 2009

Keywords

Comments

Auxiliary sequence for A161850, which is the subsequence consisting of all terms that are prime.
a(n) = A002808(n)+A161849(n).

Examples

			n = 1: composite(1) = 4; (largest prime divisor of 4) = (smallest prime divisor 4) = 2; 2 mod 2 = 0. Hence a(1) = 4+0 = 4.
n = 5: composite(5) = 10; (largest prime divisor of 10) = 5; (smallest prime divisor 10) = 2; 5 mod 2 = 1. Hence a(5) = 10+1 = 11.
		

Crossrefs

Cf. A161850, A002808 (composite numbers), A052369 (largest prime factor of n-th composite), A056608 (smallest divisor of n-th composite), A161849 (A052369(n) mod A056608(n)).

Programs

  • Magma
    [ n + D[ #D] mod D[1]: n in [2..100] | not IsPrime(n) where D is PrimeDivisors(n) ];
    
  • PARI
    genit(maxx=1000)={ctr=0;arr=List();forcomposite(k=4,+oo,v=factor(k)[,1];r=v[#v]%v[1];ctr+=1;if(ctr>=maxx,break);listput(arr,k+r));arr} \\ Bill McEachen, Nov 17 2021

A082049 Least composite number greater than n-th composite number having greater smallest prime factor than that of n-th composite number.

Original entry on oeis.org

9, 9, 9, 25, 15, 15, 15, 25, 21, 21, 21, 25, 25, 25, 49, 27, 35, 33, 33, 33, 35, 35, 49, 39, 39, 49, 45, 45, 45, 49, 49, 49, 121, 51, 55, 55, 55, 77, 57, 65, 63, 63, 63, 65, 65, 77, 69, 69, 77, 75, 75, 75, 77, 77, 121, 81, 81, 85, 85, 85, 91, 87, 91, 91, 91, 121, 93, 95, 95
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 02 2003

Keywords

Crossrefs

Programs

  • Mathematica
    seq[lim_] := Module[{c = Select[Range[lim], CompositeQ], p, s = {}, n, v}, p = FactorInteger[#][[1, 1]] & /@ c; n = Length[p]; Do[v = 0; Do[If[p[[j]] > p[[i]], v = c[[j]]; Break[]], {j, i + 1, n}]; If[v == 0, Break[], AppendTo[s, v]], {i, 1, n}]; s]; seq[125] (* Amiram Eldar, Mar 26 2025 *)

Formula

A020639(a(n)) > A020639(A002808(n)).
A082048(A002808(n)) <= a(n).

A118663 Index of the least prime dividing the n-th composite number: A000720(A020639(A002808(n))).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 4, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 4, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 4, 1, 5, 1, 2, 1, 3, 1, 1, 2, 1, 1, 4, 1, 2, 1, 1, 1, 2
Offset: 1

Views

Author

Giovanni Teofilatto, May 19 2006

Keywords

Crossrefs

Cf. A056608.

Programs

  • Mathematica
    PrimePi[FactorInteger[#][[1,1]]]&/@Select[Range[200],CompositeQ] (* Harvey P. Dale, May 13 2023 *)
  • PARI
    for(i=2,999,isprime(i)||print1(primepi(factor(i)[1,1])",")) \\ - M. F. Hasler, Apr 03 2012

Formula

A118663 = A000720 o A056608. - M. F. Hasler, Apr 03 2012

A141554 Transformed nonprime products of prime factors of the composites, the largest prime decremented by 2 and the smallest prime incremented by 2.

Original entry on oeis.org

0, 4, 0, 12, 8, 20, 15, 0, 12, 24, 25, 36, 16, 21, 44, 15, 40, 36, 0, 45, 60, 35, 24, 68, 55, 48, 60, 72, 45, 84, 32, 45, 60, 75, 88, 36, 63, 80, 85, 108, 72, 116, 75, 0, 77, 108, 120, 105, 100, 48, 140, 75, 136, 81, 132, 96, 45, 156, 120, 105, 164, 135, 144, 108, 99, 168
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 14 2008

Keywords

Comments

In the prime number decomposition of k=A002808(i), i=1,2,3,.., one instance of the largest prime, pmax=A052369(i), is replaced by pmax-2 and one instance of the smallest prime, pmin=A056608(i), is replaced by pmin+2. If the product of this modified list of factors, k*(pmax-2)*(pmin+2)/(pmin*pmax), is nonprime, it is added to the sequence.

Examples

			k(1)=4=(p(max)=2)*(p(min)=2), transformed (2-2)*(2+2)=0*4=0=a(1).
k(2)=6=(p(max)=3)*(p(min)=2), transformed (3-2)*(2+2)=1*4=4=a(2).
k(3)=8=(p(max)=2)*(p=2)*(p(min)=2), transformed (2-2)*2*(2+2)=0*2*4=0=a(3).
k(4)=9=(p(max)=3)*(p(min)=3), transformed (3-2)*(3+2)=1*5=5 (prime, skipped).
k(5)=10=(p(max)=5)*(p(min)=2), transformed (5-2)*(2+2)=3*4=12=a(4).
		

Crossrefs

Extensions

Edited and corrected by R. J. Mathar, Aug 18 2008

A161850 Subsequence of A161986 consisting of all terms that are prime.

Original entry on oeis.org

7, 11, 13, 17, 19, 23, 29, 31, 37, 37, 41, 43, 47, 47, 53, 53, 59, 61, 67, 71, 71, 73, 79, 83, 89, 89, 97, 97, 101, 101, 103, 107, 109, 113, 127, 131, 137, 137, 139, 149, 149, 151, 157, 163, 163, 167, 167, 173, 179, 179, 181, 193, 191, 193, 197, 199, 211, 223, 227
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 20 2009

Keywords

Comments

A161986(n) = k+r where k is n-th composite and r is remainder of (largest prime divisor of k) divided by (smallest prime divisor k).

Examples

			A161986(1) to A161986(27) are 4, 7, 8, 9, 11, 13, 15, 17, 16, 19, 21, 22, 23, 25, 25, 27, 27, 29, 31, 32, 35, 35, 37, 37, 39, 40, 41. Hence a(1) to a(11) are the prime terms among them, namely 7, 11, 13, 17, 19, 23, 29, 31 ,37, 37, 41.
		

Crossrefs

Cf. A161986 (A002808(n)+A161849(n)), A002808 (composite numbers), A161849 (A052369(n) mod A056608(n)), A052369 (largest prime factor of n-th composite), A056608 (smallest divisor of n-th composite).

Programs

  • Magma
    [ p: n in [2..230] | not IsPrime(n) and IsPrime(p) where p is n+D[ #D] mod D[1] where D is PrimeDivisors(n) ];

Extensions

Edited and corrected (a(19)=57 replaced by 67; a(38)=137, a(49)=179, a(50)=179 inserted) by Klaus Brockhaus, Jun 24 2009

A242016 Smallest prime factor of A135972(n), the n-th composite Mersenne number.

Original entry on oeis.org

3, 3, 3, 7, 3, 23, 3, 3, 7, 3, 3, 3, 7, 3, 47, 3, 31, 3, 7, 3, 233, 3, 3, 7, 3, 31, 3, 223, 3, 7, 3, 13367, 3, 431, 3, 7, 3, 2351, 3, 127, 3, 7, 3, 6361, 3, 23, 3, 7, 3, 179951, 3, 3, 7, 3, 31, 3, 193707721, 3, 7, 3
Offset: 1

Views

Author

Felix Fröhlich, Aug 11 2014

Keywords

Crossrefs

Cf. A135972, A242017. Subsequence of A056608.

Programs

  • PARI
    for(n=2, 1e2, if(!ispseudoprime(2^n-1), p=factor(2^n-1)[1, 1]; print1(p, ", ")))

Formula

a(n) = A020639(A135972(n)).

A085434 Twice odd isolated primes.

Original entry on oeis.org

46, 74, 94, 106, 134, 158, 166, 178, 194, 226, 254, 262, 314, 326, 334, 346, 422, 446, 466, 502, 514, 526, 554, 586, 614, 634, 662, 674, 706, 718, 734, 746, 758, 766, 778, 794, 802, 818, 878, 886, 898, 914, 934, 958, 974, 982, 998, 1006, 1018, 1082, 1094
Offset: 6

Views

Author

Cino Hilliard, Aug 13 2003

Keywords

Comments

Name was: n-th even number not a power of 2 whose largest and smallest factors do not add or subtract to a twin prime. - Robert Israel, Mar 11 2025
The density of these numbers approach 0 as n approaches oo.

Crossrefs

Programs

  • Maple
    P:= select(isprime, {seq(i,i=3..1000,2)}):
    A:= P minus (P +~ 2) minus (P -~ 2):
    sort(convert(A,list)) *~ 2; # Robert Israel, Mar 11 2025
  • PARI
    maxpmmintwin(n) = { c=0; forprime(p=3,n, if(!isprime(p-2) & !isprime(p+2),print1(p+p","); c++); ); print(); print(c" "c/n+.0) }

Formula

a(n) = 2 * A134797(n).

Extensions

Definition corrected by Robert Israel, Mar 11 2025

A091094 Number of partitions of n-th composite number not containing the smallest prime factor.

Original entry on oeis.org

3, 6, 11, 19, 20, 35, 58, 99, 96, 154, 242, 407, 375, 573, 1331, 861, 1435, 1282, 1886, 2745, 4539, 3961, 9279, 5667, 8038, 13208, 11323, 15836, 22001, 35960, 30383, 41715, 120351, 56953, 92670, 77363, 104566, 247050, 140668, 227999, 188397
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 22 2004

Keywords

Comments

a(n) = A000041(A002808(n)) - A091114(n).
a(n) = A000041(A002808(n)) - A000041(A085271(n)). - Charlie Neder, Jan 11 2019

Crossrefs

Extensions

Incorrect formula removed by Charlie Neder, Jan 11 2019

A141553 Transformed nonprime products of prime factors of the composites, the largest prime decremented by 2 and the smallest prime incremented by 1.

Original entry on oeis.org

0, 0, 4, 9, 6, 15, 12, 0, 9, 18, 20, 27, 12, 18, 33, 12, 30, 27, 0, 36, 45, 30, 18, 51, 44, 36, 45, 54, 36, 63, 24, 40, 45, 60, 66, 27, 54, 60, 68, 81, 54, 87, 60, 0, 66, 81, 90, 84, 75, 36, 105, 60, 102, 72, 99, 72, 36, 117, 90, 90, 123, 108, 108, 81, 88, 126, 116, 135, 102, 48
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 14 2008

Keywords

Comments

In the prime number decomposition of k=A002808(i), i=1,2,3,.., one instance of the largest prime, pmax=A052369(i), is replaced by pmax-2 and one instance of the smallest prime, pmin=A056608(i), is replaced by pmin+1. If the product of this modified list of factors, k*(pmax-2)*(pmin+1)/(pmin*pmax), is nonprime, it is added to the sequence.

Examples

			k(1)=(p(max)=2)*(p(min)=2), transformed (2-2)*(2+1)=0*3=0=a(1).
k(2)=(p(max)=3)*(p(min)=2), transformed (3-2)*(2+1)=1*3=3 (prime, skipped).
k(3)=(p(max)=2)*(p=2)*(p(min)=2), transformed (2-2)*2*(2+1)=0*2*3=0=a(2), etc.
		

Crossrefs

Extensions

Edited and corrected by R. J. Mathar, Aug 18 2008
Previous Showing 11-20 of 38 results. Next