cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A342889 Triangle read by rows: T(n,k) = generalized binomial coefficients (n,k)_10 (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 11, 1, 1, 66, 66, 1, 1, 286, 1716, 286, 1, 1, 1001, 26026, 26026, 1001, 1, 1, 3003, 273273, 1184183, 273273, 3003, 1, 1, 8008, 2186184, 33157124, 33157124, 2186184, 8008, 1, 1, 19448, 14158144, 644195552, 2254684432, 644195552, 14158144, 19448, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 01 2021

Keywords

Examples

			Triangle begins:
  [1],
  [1, 1],
  [1, 11, 1],
  [1, 66, 66, 1],
  [1, 286, 1716, 286, 1],
  [1, 1001, 26026, 26026, 1001, 1],
  [1, 3003, 273273, 1184183, 273273, 3003, 1],
  [1, 8008, 2186184, 33157124, 33157124, 2186184, 8008, 1],
...
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.

Crossrefs

Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • Maple
    # Generalized binomial coefficient:
    GBC := proc(n,k,m) local a,j;
    a := mul((binomial(n+m-j,m)/binomial(j+m-1,m)),j=1..k);
    end;
    # Returns first M rows of triangle:
    GBCT := proc(m,M) local a,b,n,k; global GBC;
    a:=[];
    for n from 0 to M do
      b:=[seq(GBC(n,k,m),k=0..n)];
      a:=[op(a),b];
    od: a; end;
    GBCT(10,12);
  • Mathematica
    f[n_, k_, m_] := Product[Binomial[n + m - j, m]/Binomial[j + m - 1, m], {j, k}]; Table[f[n, k, 10], {n, 0, 8}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 25 2023 *)
  • PARI
    f(n, k, m) = prod(j=1, k, binomial(n-j+m, m)/binomial(j-1+m, m));
    T(n, k) = f(n, k, 10); \\ Seiichi Manyama, Apr 02 2021

Formula

The generalized binomial coefficient (n,k)m = Product{j=1..k} binomial(n+m-j,m)/binomial(j+m-1,m).

A342890 Triangle read by rows: T(n,k) = generalized binomial coefficients (n,k)_11 (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 78, 78, 1, 1, 364, 2366, 364, 1, 1, 1365, 41405, 41405, 1365, 1, 1, 4368, 496860, 2318680, 496860, 4368, 1, 1, 12376, 4504864, 78835120, 78835120, 4504864, 12376, 1, 1, 31824, 32821152, 1837984512, 6892441920, 1837984512, 32821152, 31824, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 01 2021

Keywords

Comments

For references, links, programs, etc., see earlier sequences in this series, especially A342889.

Examples

			Triangle begins:
  [1],
  [1, 1],
  [1, 12, 1],
  [1, 78, 78, 1],
  [1, 364, 2366, 364, 1],
  [1, 1365, 41405, 41405, 1365, 1],
  [1, 4368, 496860, 2318680, 496860, 4368, 1],
  [1, 12376, 4504864, 78835120, 78835120, 4504864, 12376, 1],
  [1, 31824, 32821152, 1837984512, 6892441920, 1837984512, 32821152, 31824, 1],
...
		

Crossrefs

Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • PARI
    f(n, k, m) = prod(j=1, k, binomial(n-j+m, m)/binomial(j-1+m, m));
    T(n, k) = f(n, k, 11); \\ Seiichi Manyama, Apr 02 2021

Formula

The generalized binomial coefficient (n,k)m = Product{j=1..k} binomial(n+m-j,m)/binomial(j+m-1,m).

A342891 Triangle read by rows: T(n,k) = generalized binomial coefficients (n,k)_12 (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 13, 1, 1, 91, 91, 1, 1, 455, 3185, 455, 1, 1, 1820, 63700, 63700, 1820, 1, 1, 6188, 866320, 4331600, 866320, 6188, 1, 1, 18564, 8836464, 176729280, 176729280, 8836464, 18564, 1, 1, 50388, 71954064, 4892876352, 19571505408, 4892876352, 71954064, 50388, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 01 2021

Keywords

Comments

For references, links, programs, etc., see earlier sequences in this series, especially A342889.

Examples

			Triangle begins:
  [1],
  [1, 1],
  [1, 13, 1],
  [1, 91, 91, 1],
  [1, 455, 3185, 455, 1],
  [1, 1820, 63700, 63700, 1820, 1],
  [1, 6188, 866320, 4331600, 866320, 6188, 1],
  [1, 18564, 8836464, 176729280, 176729280, 8836464, 18564, 1],
...
		

Crossrefs

Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • PARI
    f(n, k, m) = prod(j=1, k, binomial(n-j+m, m)/binomial(j-1+m, m));
    T(n, k) = f(n, k, 12); \\ Seiichi Manyama, Apr 02 2021

Formula

The generalized binomial coefficient (n,k)m = Product{j=1..k} binomial(n+m-j,m)/binomial(j+m-1,m).

A359363 Triangle read by rows. The coefficients of the Baxter polynomials p(0, x) = 1 and p(n, x) = x*hypergeom([-1 - n, -n, 1 - n], [2, 3], -x) for n >= 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 10, 10, 1, 0, 1, 20, 50, 20, 1, 0, 1, 35, 175, 175, 35, 1, 0, 1, 56, 490, 980, 490, 56, 1, 0, 1, 84, 1176, 4116, 4116, 1176, 84, 1, 0, 1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1, 0, 1, 165, 4950, 41580, 116424, 116424, 41580, 4950, 165, 1
Offset: 0

Views

Author

Peter Luschny, Dec 28 2022

Keywords

Comments

This triangle is a member of a family of Pascal-like triangles. Let T(n, k, m) = sf(m)*F(n - 1) / (F(k - 1)*F(n - k)) if k > 0 and otherwise k^n, where F(n) = Product_{j=0..m} (n + j)! and sf(m) are the superfactorials A000178. The case m = 2 gives this triangle, some other cases are given in the crossreferences. See also A342889 for a related representation of generalized binomial coefficients.

Examples

			Triangle T(n, k) starts:
[0] 1
[1] 0, 1
[2] 0, 1,   1
[3] 0, 1,   4,    1
[4] 0, 1,  10,   10,     1
[5] 0, 1,  20,   50,    20,     1
[6] 0, 1,  35,  175,   175,    35,     1
[7] 0, 1,  56,  490,   980,   490,    56,    1
[8] 0, 1,  84, 1176,  4116,  4116,  1176,   84,   1
[9] 0, 1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1
.
Let p = (p1, p2,..., pn) denote a permutation of {1, 2,..., n}. The pair (p(i), p(i+1)) is a 'rise' if p(i) < p(i+1). Additionally a conventional rise is counted at the beginning of p.
T(n, k) is the number of Baxter permutations of {1,2,...,n} with k rises. For example for n = 4, [T(n, k) for k = 0..n] = [0, 1, 10, 10, 1]. The permutations, with preceding number of rises, are:
.
1 [4, 3, 2, 1],  3 [2, 3, 4, 1],  2 [3, 4, 2, 1],  3 [2, 3, 1, 4],
2 [3, 2, 4, 1],  3 [2, 1, 3, 4],  2 [3, 2, 1, 4],  3 [1, 3, 4, 2],
2 [2, 4, 3, 1],  3 [1, 3, 2, 4],  2 [4, 2, 3, 1],  3 [3, 4, 1, 2],
2 [2, 1, 4, 3],  3 [3, 1, 2, 4],  2 [4, 2, 1, 3],  3 [1, 2, 4, 3],
2 [1, 4, 3, 2],  3 [1, 4, 2, 3],  2 [4, 1, 3, 2],  3 [4, 1, 2, 3],
2 [4, 3, 1, 2],  4 [1, 2, 3, 4].
		

Crossrefs

Special cases of the general formula: A097805 (m = 0), (0,1)-Pascal triangle; A090181 (m = 1), triangle of Narayana; this triangle (m = 2); A056940 (m = 3), with 1,0,0...; A056941 (m = 4), with 1,0,0...; A142465 (m = 5), with 1,0,0....
Variant: A056939. Diagonals: A000292, A006542, A047819.

Programs

  • Maple
    p := (n, x) -> ifelse(n = 0, 1, x*hypergeom([-1-n, -n, 1-n], [2, 3], -x)):
    seq(seq(coeff(simplify(p(n, x)), x, k), k = 0..n), n = 0..10);
    # Alternative:
    T := proc(n, k) local F; F := n -> n!*(n+1)!*(n+2)!;
    ifelse(k = 0, k^n, 2*F(n-1)/(F(k-1)*F(n-k))) end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
  • PARI
    C=binomial;
    T(n, k) = if(n==0 && k==0, 1, ( C(n+1,k-1) * C(n+1,k) * C(n+1,k+1) ) / ( C(n+1,1) * C(n+1,2) ) );
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print());
    \\ Joerg Arndt, Jan 04 2024
    
  • Python
    from functools import cache
    from math import factorial
    @cache
    def A359363Row(n: int) -> list[int]:
        @cache
        def F(n: int): return factorial(n) ** 3 * ((n+1) * (n+1) * (n+2))
        if n == 0: return [1]
        return [0] + [(2*F(n-1))//(F(k-1) * F(n-k)) for k in range(1, n+1)]
    for n in range(0, 10): print(A359363Row(n))
    # Peter Luschny, Jan 04 2024
  • SageMath
    def A359363(n):
        if n == 0: return SR(1)
        h = x*hypergeometric([-1 - n, -n, 1 - n], [2, 3], -x)
        return h.series(x, n + 1).polynomial(SR)
    for n in range(10): print(A359363(n).list())
    def PolyA359363(n, t): return Integer(A359363(n)(x=t).n())
    # Peter Luschny, Jan 04 2024
    

Formula

T(n, k) = [x^k] p(n, x).
T(n, k) = 2*F(n-1)/(F(k-1)*F(n-k)) for k > 0 where F(n) = n!*(n+1)!*(n+2)!.
p(n, 1) = A001181(n), i.e. the Baxter numbers are the values of the Baxter polynomials at x = 1.
(-1)^(n + 1)*p(2*n + 1, -1) = A217800(n) .

A120258 Triangle of central coefficients of generalized Pascal-Narayana triangles.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 20, 20, 4, 1, 1, 70, 175, 50, 5, 1, 1, 252, 1764, 980, 105, 6, 1, 1, 924, 19404, 24696, 4116, 196, 7, 1, 1, 3432, 226512, 731808, 232848, 14112, 336, 8, 1, 1, 12870, 2760615, 24293412, 16818516, 1646568, 41580, 540, 9, 1
Offset: 0

Views

Author

Paul Barry, Jun 13 2006

Keywords

Comments

Columns are the central coefficients of the triangles T(n, k;r) with T(n, k;r)=Product{j=0..r, C(n+j, k+j)/C(n-k+j, j)}*[k<=n]; (r=0,A007318), (r=1;A001263),(r=2,A056939),(r=3,A056940),(r=4,A056941). Essentially A103905 as a number triangle with an extra diagonal of 1's. Central coefficients T(2n, n) are A008793. Row sums are A120259. Diagonal sums are A120260.

Examples

			Triangle begins:
  1;
  1,   1;
  1,   2,     1;
  1,   6,     3,     1;
  1,  20,    20,     4,    1;
  1,  70,   175,    50,    5,   1;
  1, 252,  1764,   980,  105,   6, 1;
  1, 924, 19404, 24696, 4116, 196, 7, 1;
  ...
		

Crossrefs

Row sums give A120259.

Programs

  • PARI
    T(n, k) = prod(j=0, k-1, binomial(2*n-2*k+j, n-k)/binomial(n-k+j, j)); \\ Seiichi Manyama, Apr 02 2021

Formula

Number triangle T(n, k)=[k<=n]*Product{j=0..k-1, C(2n-2k+j, n-k)/C(n-k+j, j)}
As a square array, this is T(n,m)=product{k=1..m, product{j=1..n, product{i=1..n, (i+j+k-1)/(i+j+k-2)}}}; - Paul Barry, May 13 2008

A197208 Triangular array: T(n,k) = sqrt(C(n-1,k-1)*C(n-1,k)*C(n,k+1)* C(n+1,k+1)*C(n+1,k)*C(n,k-1)), where C(n,k) = binomial(n,k).

Original entry on oeis.org

3, 12, 12, 30, 120, 30, 60, 600, 600, 60, 105, 2100, 5250, 2100, 105, 168, 5880, 29400, 29400, 5880, 168, 252, 14112, 123480, 246960, 123480, 14112, 252, 360, 30240, 423360, 1481760, 1481760, 423360, 30240, 360, 495, 59400, 1247400, 6985440, 12224520, 6985440, 1247400, 59400, 495
Offset: 2

Views

Author

Peter Bala, Oct 12 2011

Keywords

Comments

In Pascal's triangle, the product of the six entries surrounding C(n,k) is a perfect square.
.............................................
..............C(n-1,k-1)____C(n-1,k).........
.............../.................\...........
............C(n,k-1)...C(n,k)....C(n,k+1)....
...............\................./...........
..............C(n+1,k)______C(n+1,k+1).......
.............................................
In fact, C(n-1,k-1)*C(n,k+1)*C(n+1,k) = C(n-1,k)*C(n+1,k+1)*C(n,k-1).

Examples

			.n\k.|....1......2......3......4......5......6
= = = = = = = = = = = = = = = = = = = = = = = =
..2..|....3...
..3..|...12.....12
..4..|...30....120.....30
..5..|...60....600....600.....60
..6..|..105...2100...5250...2100....105
..7..|..168...5880..29400..29400...5880....168
...
T(4,3) = sqrt(1*3*6*10*5*1) = sqrt(900) = 30
..............1..............
............1...1............
..........1...2...1..........
........1...3...3____1.......
.............../......\......
......1...4...6...4....1.....
...............\....../......
...1...5...10...10___5.....1.
		

Crossrefs

Cf. A007318, A056939, A197209 (row sums).

Formula

T(n,k) = sqrt(C(n-1,k-1)*C(n-1,k)*C(n,k+1)*C(n+1,k+1)*C(n+1,k)* C(n,k-1)).
T(n,k) = C(n-1,k-1)*C(n,k+1)*C(n+1,k) = C(n-1,k)*C(n+1,k+1)*C(n,k-1).
T(n,k) = 1/2*(n^3-n)*A056939(n-2,k-1), for n >= 2 and 1 <= k <= n-1.
Row sums are A197209.

A342972 Triangle T(n,k) read by rows: T(n,k) = Product_{j=0..n-1} binomial(n+j,k)/binomial(k+j,k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 10, 10, 1, 1, 35, 105, 35, 1, 1, 126, 1176, 1176, 126, 1, 1, 462, 13860, 41580, 13860, 462, 1, 1, 1716, 169884, 1557270, 1557270, 169884, 1716, 1, 1, 6435, 2147145, 61408347, 184225041, 61408347, 2147145, 6435, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 01 2021

Keywords

Comments

Triangle read by rows: T(n,k) = generalized binomial coefficients (n,k)n where (n,k)_m is Product{j=1..k} binomial(n-j+m,m)/binomial(j-1+m,m).

Examples

			Triangle begins:
  1;
  1,    1;
  1,    3,       1;
  1,   10,      10,        1;
  1,   35,     105,       35,         1;
  1,  126,    1176,     1176,       126,        1;
  1,  462,   13860,    41580,     13860,      462,       1;
  1, 1716,  169884,  1557270,   1557270,   169884,    1716,    1;
  1, 6435, 2147145, 61408347, 184225041, 61408347, 2147145, 6435, 1;
		

Crossrefs

Row sums gives A342967.
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • Mathematica
    T[n_, k_] := Product[Binomial[n + i, k]/Binomial[k + i, k], {i, 0, n - 1}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 01 2021 *)
  • PARI
    T(n, k) = prod(j=0, n-1, binomial(n+j, k)/binomial(k+j, k));
    
  • PARI
    T(n, k) = prod(j=0, k-1, binomial(2*n-1, n+j)/binomial(2*n-1, j));
    
  • PARI
    f(n, k, m) = prod(j=1, k, binomial(n-j+m, m)/binomial(j-1+m, m));
    T(n, k) = f(n, k, n);

Formula

T(n,k) = Product_{j=0..k-1} binomial(2*n-1,n+j)/binomial(2*n-1,j).

A368708 a(n) = hypergeom([-1 - n, -n, 1 - n], [2, 3], -2).

Original entry on oeis.org

1, 1, 3, 13, 69, 417, 2763, 19609, 146793, 1146833, 9278595, 77292261, 659973933, 5756169681, 51137399979, 461691066417, 4228199347281, 39216540096993, 367890444302787, 3486697883136957, 33353178454762389, 321754445379041601, 3127955713554766923, 30624486778208481993, 301790556354721667769, 2991957347531210976817
Offset: 0

Views

Author

Joerg Arndt, Jan 04 2024

Keywords

Crossrefs

Programs

  • Maple
    seq(simplify( hypergeom([-1 - n, -n, 1 - n], [2, 3], -2) ), n = 0..25); # Peter Bala, Sep 09 2024
  • Mathematica
    Table[HypergeometricPFQ[{-1-n, -n, 1-n}, {2, 3}, -2], {n, 0, 30}] (* Vaclav Kotesovec, Jan 04 2024 *)
    a[0] := 1; a[n_] := 2^(n + 1)/(n*(n + 1)^2)*Sum[(1/2)^k*Binomial[n + 1, k - 1]*Binomial[n + 1, k]*Binomial[n + 1, k + 1], {k, 1, n}]; Table[a[n], {n, 0, 25}] (* Detlef Meya, May 28 2024 *)
  • Python
    def A368708(n):
        if n == 0: return 1
        return sum(2**k * v for k, v in enumerate(A359363Row(n))) // 2
    print([A368708(n) for n in range(26)]) # Peter Luschny, Jan 04 2024
  • SageMath
    def A368708(n): return PolyA359363(n, 2) // 2 if n > 0 else 1
    print([A368708(n) for n in range(23)])  # Peter Luschny, Jan 04 2024
    

Formula

a(n) = (1/2)*B(n, 2) where B(n, x) are the Baxter polynomials with coefficients A359363, for n > 0. - Peter Luschny, Jan 04 2024
a(n) ~ 3^(n + 7/6) * (2^(2/3) + 2^(1/3) + 1)^(n + 5/3) / (2^(4/3) * Pi * n^4). - Vaclav Kotesovec, Jan 04 2024
a(0) = 1, a(n) = 2^(n + 1)/(n*(n + 1)^2)*Sum_{k=1..n} (1/2)^k*binomial(n + 1, k - 1)*binomial(n + 1, k)*binomial(n + 1, k + 1). - Detlef Meya, May 29 2024
From Peter Bala, Sep 09 2024: (Start)
a(n+1) = Sum_{k = 0..n} A056939(n, k)*2^k.
P-recursive: (n+1)*(n+3)*(n+2)*(3*n-2)*a(n) = 3*(9*n^3+3*n^2-4*n+4)*(n+1)*a(n-1) + 3*(n-2)*(3*n-1)*(9*n^2-3*n-10)*a(n-2) + 27*(3*n+1)*(n-3)*(n-2)^2*a(n-3) = 0 with a(0) = 1, a(1) = 1 and a(2) = 3. (End)

A087647 Triangle of 3-Narayana numbers, N(n,k), for n >= 1, 0 <= k <= 2n-2.

Original entry on oeis.org

1, 1, 3, 1, 1, 10, 20, 10, 1, 1, 22, 113, 190, 113, 22, 1, 1, 40, 400, 1456, 2212, 1456, 400, 40, 1, 1, 65, 1095, 7095, 20760, 29484, 20760, 7095, 1095, 65, 1, 1, 98, 2541, 26180, 127435, 320034, 433092, 320034, 127435, 26180, 2541, 98, 1, 1, 140, 5250, 79870
Offset: 1

Views

Author

Robert A. Sulanke (sulanke(AT)math.boisestate.edu), Sep 23 2003

Keywords

Comments

N(n,k) counts ballot sequences for three candidates having length 3n, ending in a tie and having k instances of a vote for a weaker candidate being followed immediately by a vote for a stronger one.
Equivalently, N(n,k) counts the lattice paths P := p_1p_2...p_{3n} using the steps X := (1,0,0), Y := (0,1,0) and Z := (0,0,1), running from (0,0,0) to (n,n,n), lying in {(x,y,z) : 0<=x<=y<=z } and satisfying #{i : p_ip_{i+1} in {XY,XZ,YZ} } = k.

Examples

			1;
1,3,1;
1,10,20,10,1;
1,22,113,190,113,22,1;
1,40,400,1456,2212,1456,400,40,1;
1,65,1095,7095,20760,29484,20760,7095,1095,65,1;
1,98,2541,26180,127435,320034,433092,320034,127435,26180,2541,98,1
		

Crossrefs

Cf. A001263 (Narayana numbers), A005789 (= Sum[N(n, k), {k, 0, 2n-2}], 3-dimensional Catalan numbers), A056939 (antichains in the poset 3*m*n).

Programs

  • Maple
    seq( seq( add(2*(-1)^(k-j)*binomial(3*n+1, k-j)* binomial(n+j,n)*binomial(n+j+1,n)*binomial(n+j+2,n)/(n+1)^2/(n+2), j = 0 .. k), k = 0 .. 2*n-2), n = 1 ..7 );

Formula

For 0<=k<=2n-2, N(n, k) := Sum[2*(-1)^(k-j)*C(3*n+1, k-j)*C(n+j, n)*C(n+j+1, n)*C(n+j+2, n)/(n+1)^2/(n+2), {j, 0, k}] = Sum[(-1)^(k-j)*C(3*n+1, k-j)*a(n, j), {j, 0, k}] where a(m, n) is an entry in the triangle of A056939.
Recurrence: If N_n(t) := Sum[t^k*N(n, k), {k, 0, 2n-2}] then (3n-4)(n+2)(n+1)^2 N_n(t) = (3n-2)(n+1)( 4(1+t+t^2) - 5(1+7t+t^2)n +3(1+7t+t^2)n^2 ) N_{n-1}(t) - (n-2)( -12 +29n -30n^2 +9n^3)(1-t)^4 N_{n-2}(t) +(3n-1)(n-2)(n-3)(n-4) (1-t)^6 N_{n-3}(t).

A095266 A sequence generated from the Narayana triangle considered as a matrix, or from Pascal's triangle.

Original entry on oeis.org

1, 42, 303, 1144, 3105, 6906, 13447, 23808, 39249, 61210, 91311, 131352, 183313, 249354, 331815, 433216, 556257, 703818, 878959, 1084920, 1325121, 1603162, 1922823, 2288064, 2703025, 3172026, 3699567, 4290328, 4949169, 5681130
Offset: 1

Views

Author

Gary W. Adamson, May 31 2004

Keywords

Comments

A095267 has the same recursion rule but is derived from the matrix derived from A056939 (a type of generalized Narayana triangle).

Examples

			a(7) = 23808 = 5*a(6) - 10*a(5) + 10*a(4) - 5*a(3) + a(2) = 5*13447 - 10*6906 + 10*3105 - 5*1144 + 303.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (MatrixPower[{{1, 0, 0, 0, 0}, {1, 1, 0, 0, 0}, {1, 3, 1, 0, 0}, {1, 6, 6, 1, 0}, {1, 10, 20, 10, 1}}, n].{{1}, {0}, {0}, {0}, {0}})[[5, 1]]; Table[ a[n], {n, 30}] (* Robert G. Wilson v, Jun 05 2004 *)

Formula

a(n+6) = 5*a(n+5) - 10*a(n+4) + 10*a(n+3) - 5*a(n+2) + a(n), where the multipliers with changed signs are found in the characteristic polynomial of the generating matrix M: x^5 - 5x^4 + 10x^3 - 10x^2 + 5x - 1. Let M be the 5th-order Matrix M, having Narayana triangle (A001263) rows (fill in with zeros): [1 0 0 0 0 / 1 1 0 0 0 / 1 3 1 0 0 / 1 6 6 1 0 / 1 10 20 10 1]. Then M^n *[1 0 0 0 0] = [1 n A000326(n) A005915(n) a(n)] where A000326 = the pentagonal numbers and A005915 = the hex prism numbers.
From Colin Barker, Oct 21 2012: (Start)
a(n) = (n*(-8 + 25*n - 30*n^2 + 15*n^3))/2.
G.f.: -x*(39*x^3 + 103*x^2 + 37*x + 1)/(x-1)^5. (End)

Extensions

Edited and corrected by Robert G. Wilson v, Jun 05 2004
Typo in recurrence fixed by Colin Barker, Oct 21 2012
Previous Showing 11-20 of 25 results. Next