cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A361180 Primes p such that the odd part of p - 1 is upper-bounded by the dyadic valuation of p - 1.

Original entry on oeis.org

3, 5, 17, 97, 193, 257, 641, 769, 12289, 18433, 40961, 65537, 114689, 147457, 163841, 786433, 1179649, 5767169, 7340033, 13631489, 23068673, 167772161, 469762049, 2013265921, 2281701377, 3221225473, 3489660929, 12348030977, 77309411329, 206158430209, 2061584302081, 2748779069441
Offset: 1

Views

Author

Keywords

Comments

Primes of the form k*2^m + 1 where k <= m and k is odd. - David A. Corneth, Mar 03 2023
Primes prime(k) such that A057023(k) <= A023506(k). - Michel Marcus, Mar 09 2023

Examples

			3 is a term because the odd part of 2 is 1, the dyadic valuation of 2 is 1 and 1 <= 1.
641 = 5*2^7 + 1 is a term because the odd part of 640 is 5, the dyadic valuation of 640 is 7 and 5 <= 7.
		

Crossrefs

Cf. A000040 (primes), A000265 (odd part), A007814 (dyadic valuation).

Programs

  • Maple
    # Maple program due to David A. Corneth, Mar 03 2023
    aList := proc(upto)
       local i, j, p, R:
       R := {}:
       for i from 1 to ilog2(upto) do
          for j from 1 to min(i, floor(upto/2^i)) do
             p := j*2^i+1:
             if isprime(p) then R := `union`(R, {p}): fi: od: od:
       R: end:
    aList(10^12);
  • PARI
    isok(p) = if (isprime(p), my(m=valuation(p-1,2)); (p-1)/2^m <= m); \\ Michel Marcus, Mar 03 2023
    
  • PARI
    upto(n) = {my(res = List()); for(i = 1, logint(n, 2), forstep(j = 1, min(i, n>>i), 2, if(isprime((j<David A. Corneth, Mar 03 2023

Extensions

a(17)..a(27) from Michel Marcus, Mar 03 2023
More terms from David A. Corneth, Mar 03 2023

A342974 Primes p such that the order of 2 modulo p is not divisible by the largest odd divisor of p - 1.

Original entry on oeis.org

31, 43, 109, 127, 151, 157, 223, 229, 241, 251, 277, 283, 307, 331, 397, 431, 433, 439, 457, 499, 571, 601, 631, 641, 643, 673, 683, 691, 727, 733, 739, 811, 911, 919, 953, 971, 997, 1013, 1021, 1051, 1069, 1093, 1103, 1163, 1181, 1321, 1327, 1399, 1423, 1429
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 01 2021

Keywords

Comments

Every prime factor of a composite Fermat number belongs to this sequence.
If a prime of the form 3*2^k + 1 belongs to this sequence, then k is in A204620 (see Golomb).
Primes p such that A014664(primepi(p)) is not divisible by A057023(primepi(p)). - Michel Marcus, Apr 26 2021

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range@300,Mod[MultiplicativeOrder[2,#],Max@Select[Divisors[#-1],OddQ]]!=0&] (* Giorgos Kalogeropoulos, Apr 02 2021 *)
  • PARI
    forprime(p=3, 1429, if(Mod(znorder(Mod(2, p)), (p-1)>>valuation(p-1, 2)), print1(p, ", ")));
Previous Showing 11-12 of 12 results.