cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A125039 Primes of the form 8k+1 generated recursively. Initial prime is 17. General term is a(n)=Min {p is prime; p divides (2Q)^4 + 1}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

17, 1336337, 4261668267710686591310687815697, 41, 4390937134822286389262585915435960722186022220433, 241, 1553, 243537789182873, 97, 27673, 4289, 457, 137201, 73, 337, 569891669978849, 617, 1697, 65089, 1609, 761
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (2Q)^4 + 1 are congruent to 1 modulo 8.

Examples

			a(3) = 4261668267710686591310687815697 is the smallest prime divisor of (2Q)^4 + 1 = 4261668267710686591310687815697, where Q = 17 * 1336337.
		

References

  • G. A. Jones and J. M. Jones, Elementary Number Theory, Springer-Verlag, NY, (1998), p. 271.

Crossrefs

Extensions

More terms from Sean A. Irvine, Apr 09 2015

A217759 Primes of the form 4k+3 generated recursively: a(1)=3, a(n)= Min{p; p is prime; Mod[p,4]=3; p|4Q^2-1}, where Q is the product of all previous terms in the sequence.

Original entry on oeis.org

3, 7, 43, 19, 6863, 883, 23, 191, 2927, 205677423255820459, 11, 163, 227, 9127, 59, 31, 71, 131627, 2101324929412613521964366263134760336303, 127, 1302443, 4065403, 107, 2591, 21487, 223, 12823, 167, 53720906651, 5452254637117019, 39827899, 11719, 131
Offset: 1

Views

Author

Daran Gill, Mar 23 2013

Keywords

Comments

Contrast A057207, where all the factors are congruent to 1 (mod 4), here only one is guaranteed to be congruent to 3 (mod 4).

Examples

			a(10) is 205677423255820459 because it is the only prime factor congruent to 3 (mod 4) of 4*(3*7*43*19*6863*883*23*191*2927)^2-1 = 5*13*2088217*256085119729*205677423255820459. The four smaller factors are all congruent to 1 (mod 4).
		

References

  • Dirichlet,P.G.L (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 13.

Crossrefs

A057205 Primes congruent to 3 modulo 4 generated recursively: a(n) = Min_{p, prime; p mod 4 = 3; p|4Q-1}, where Q is the product of all previous terms in the sequence. The initial term is 3.

Original entry on oeis.org

3, 11, 131, 17291, 298995971, 8779, 594359, 59, 151, 983, 19, 38851089348584904271503421339, 2359886893253830912337243172544609142020402559023, 823818731, 2287, 7, 9680188101680097499940803368598534875039120224550520256994576755856639426217960921548886589841784188388581120523, 163, 83, 1471, 34211, 2350509754734287, 23567
Offset: 1

Views

Author

Labos Elemer, Oct 09 2000

Keywords

Examples

			a(4) = 17291 = 4*4322 + 3 is the smallest prime divisor congruent to 3 (mod 4) of Q = 3*11*131 - 1 = 17291.
		

References

  • P. G. L. Dirichlet (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.

Crossrefs

Programs

  • Mathematica
    a={3}; q=1;
    For[n=2,n<=7,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[4*q-1][[All,1]],Mod[#,4]==3&]]];
        ];
    a (* Robert Price, Jul 18 2015 *)

Extensions

More terms from Phil Carmody, Sep 18 2005
Terms corrected and extended by Sean A. Irvine, Oct 23 2014

A124986 Primes of the form 12*k + 5 generated recursively. Initial prime is 5. General term is a(n) = Min_{p is prime; p divides 1 + 4*Q^2; p == 5 (mod 12)}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

5, 101, 1020101, 53, 29, 2507707213238852620996901, 449, 433361, 401, 925177698346131180901394980203075088053316845914981, 44876921, 17, 173
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006 and Nov 23 2006

Keywords

Comments

All prime divisors of 1+4Q^2 are congruent to 1 modulo 4.
At least one prime divisor of 1+4Q^2 is congruent to 2 modulo 3 and hence to 5 modulo 12.
The first seven terms are the same as those of A057207.
The next term is known but is too large to include.

Examples

			a(8) = 433361 is the smallest prime divisor congruent to 5 mod 12 of 1+4Q^2 = 3179238942812523869898723304484664524974766291591037769022962819805514576256901 = 13 * 433361 * 42408853 * 2272998442375593325550634821 * 5854291291251561948836681114631909089, where Q = 5 * 101 * 1020101 * 53 * 29 * 2507707213238852620996901 * 449.
		

Crossrefs

Programs

  • Mathematica
    a={5}; q=1;
    For[n=2,n<=5,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[4*q^2+1][[All,1]],Mod[#,12]==5 &]]];
        ];
    a (* Robert Price, Jul 16 2015 *)

A124987 Primes of the form 12k+5 generated recursively. Initial prime is 5. General term is a(n) = Min {p is prime; p divides 4+Q^2; p == 5 (mod 12)}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

5, 29, 17, 6076229, 1289, 78067083126343039013, 521, 8606045503613, 15837917, 1873731749, 809, 137, 2237, 17729
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

Since Q is odd, all prime divisors of 4+Q^2 are congruent to 1 modulo 4.
At least one prime divisor of 4+Q^2 is congruent to 2 modulo 3 and hence to 5 modulo 12.
The first two terms are the same as those of A057208.

Examples

			a(3) = 17 is the smallest prime divisor congruent to 5 mod 12 of 4+Q^2 = 21029 = 17 * 1237, where Q = 5 * 29.
		

Crossrefs

Programs

  • Mathematica
    a={5}; q=1;
    For[n=2,n<=5,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[q^2+4][[All,1]],Mod[#,12]==5 &]]];
        ];
    a (* Robert Price, Jul 16 2015 *)

A124991 Primes of the form 10k+1 generated recursively. Initial prime is 11. General term is a(n)=Min {p is prime; p divides (R^5 - 1)/(R - 1); Mod[p,5]=1}, where Q is the product of previous terms in the sequence and R = 5Q.

Original entry on oeis.org

11, 211, 1031, 22741, 41, 15487770335331184216023237599647357572461782407557681, 311, 61, 55172461, 3541, 1381, 2851, 19841, 151, 9033671, 456802301, 1720715817015281, 19001, 71
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (R^5 - 1)/(R - 1) different from 5 are congruent to 1 modulo 10.

Examples

			a(3) = 1031 is the smallest prime divisor congruent to 1 mod 10 of (R^5 - 1)/(R - 1) = 18139194759758381 = 1031 * 17593787351851, where Q = 11 * 211 and R = 5Q.
		

References

  • M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), pp. 208-209.

Crossrefs

Programs

  • Mathematica
    a={11}; q=1;
    For[n=2,n<=6,n++,
        q=q*Last[a]; r=5*q;
        AppendTo[a,Min[Select[FactorInteger[(r^5-1)/(r-1)][[All,1]],Mod[#,10]==1&]]];
        ];
    a (* Robert Price, Jul 14 2015 *)

Extensions

a(20)..a(34) in b-file from Max Alekseyev, Oct 23 2008

A125038 Primes of the form 34k+1 generated recursively. Initial prime is 103. General term is a(n) = Min {p is prime; p divides (R^17 - 1)/(R - 1); p == 1 (mod 17)}, where Q is the product of previous terms in the sequence and R = 17*Q.

Original entry on oeis.org

103, 307, 9929, 187095201191, 76943, 37061, 137, 5615258941637, 302125531, 18089, 613, 409, 9419, 193189
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (R^17 - 1)/(R - 1) different from 17 are congruent to 1 modulo 34.

Examples

			a(2) = 307 is the smallest prime divisor congruent to 1 mod 34 of (R^17 - 1)/(R-1) = 7813154903878257490980895975711871949096304270238017 = 307 * 326669135226428664734261 * 77907623430368753779713071, where Q = 103 and R = 17*Q.
		

References

  • M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), pp. 208-209.

Crossrefs

Programs

  • Mathematica
    a={103}; q=1;
    For[n=2,n<=5,n++,
        q=q*Last[a]; r=17*q;
        AppendTo[a,Min[Select[FactorInteger[(r^17-1)/(r-1)][[All,1]],Mod[#,34]==1 &]]];
        ];
    a (* Robert Price, Jul 14 2015 *)

Extensions

a(9)-a(14) from Sean A. Irvine, Jun 27 2011

A125040 Primes of the form 16k+1 generated recursively. Initial prime is 17. General term is a(n)=Min {p is prime; p divides (2Q)^8 + 1}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

17, 47441, 5136468762577, 1217, 2413992194819190142614641, 113, 52654897, 241, 5310928841473, 673
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (2Q)^8 + 1 are congruent to 1 modulo 16.

Examples

			a(3) = 5136468762577 is the smallest prime divisor of (2Q)^8 + 1 = 45820731194492299767895461612240999140120699535617 = 5136468762577 * 33000748370307713 * 270317134666005456817, where Q = 17 * 47441.
		

References

  • G. A. Jones and J. M. Jones, Elementary Number Theory, Springer-Verlag, NY, (1998), p. 271.

Crossrefs

Programs

  • Mathematica
    a = {17}; q = 1;
    For[n = 2, n <= 3, n++,
        q = q*Last[a];
        AppendTo[a, Min[Select[FactorInteger[(2*q)^8 + 1][[All, 1]],
        Mod[#, 16] == 1 &]]];
        ];
    a (* Robert Price, Jul 14 2015 *)

Extensions

a(5)-a(10) from Max Alekseyev, Oct 18 2008

A125041 Primes of the form 24k+17 generated recursively. Initial prime is 17. General term is a(n) = Min {p is prime; p divides (2Q)^4 + 1; p == 17 (mod 24)}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

17, 1336337, 4261668267710686591310687815697, 41, 904641301321079897900944986453955254215268639579197293450763646548520041534444726724543203327659858344185865089, 3449, 18701609, 8009, 38599161306788868932168755721, 857, 130073, 1433, 113, 809, 18954775793
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (2Q)^4 + 1 are congruent to 1 modulo 8.
At least one prime divisor of (2Q)^4 + 1 is congruent to 2 modulo 3 and hence to 17 modulo 24.
The first four terms are the same as those of A125039.

Examples

			a(3) = 4261668267710686591310687815697 is the smallest prime divisor congruent to 17 mod 24 of (2Q)^4 + 1 = 4261668267710686591310687815697, where Q = 17 * 1336337.
		

References

  • G. A. Jones and J. M. Jones, Elementary Number Theory, Springer-Verlag, NY, (1998), p. 271.

Crossrefs

Extensions

More terms from Sean A. Irvine, Jun 09 2015

A124985 Primes of the form 8*k + 7 generated recursively. Initial prime is 7. General term is a(n) = Min_{p is prime; p divides 8*Q^2 - 1; p == 7 (mod 8)}, where Q is the product of the previous terms.

Original entry on oeis.org

7, 23, 207367, 1902391, 167, 1511, 28031, 79, 3142977463, 2473230126937097422987916357409859838765327, 2499581669222318172005765848188928913768594409919797075052820591, 223
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

8*Q^2 - 1 always has a prime divisor congruent to 7 modulo 8.

Examples

			a(4) = 1902391 is the smallest prime divisor, congruent to 7 modulo 8, of 8*Q^2 - 1 = 8917046441372551 = 97 * 1902391 * 48322513, where Q = 7 * 23 * 207367.
		

References

  • D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 182.

Crossrefs

Programs

  • Mathematica
    a={7}; q=1;
    For[n=2,n<=9,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[8*q^2-1][[All,1]],Mod[#,8]==7&]]];
        ];
    a (* Robert Price, Jul 18 2015 *)
  • PARI
    main(size)={my(v=vector(size),i,q=1,t);for(i=1,size,t=1;while(!(prime(t)%8==7&&(8*q^2-1)%prime(t)==0),t++);v[i]=prime(t);q*=v[i]);v;} /* Anders Hellström, Jul 18 2015 */

Extensions

Edited and added a(11)-a(12) by Max Alekseyev, May 31 2013
Previous Showing 11-20 of 24 results. Next