cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A084960 Initial prime of a prime chain of length n under the iteration x->5x+4.

Original entry on oeis.org

2, 3, 5, 83, 263, 5333, 5333, 6714497, 42360737, 3757699889, 3757699889, 1431898413161, 5654774136689, 12756824771254199, 184574272412533499
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = c*x + d.

Examples

			a(3) = 5 since 5, f(5) = 29 and f(29) = 149 are primes when f(x) = 5x+4.
		

Crossrefs

Programs

  • Mathematica
    t[p_] := Block[{c=1, q = 5*p+4}, While[ PrimeQ@q, q = 5*q + 4; c++]; c]; a[n_] := Block[{p = 2}, While[t[p] < n, p = NextPrime@ p]; p]; Array[a, 8] (* Giovanni Resta, Mar 21 2017 *)

Extensions

a(9) from Stefan Steinerberger, May 18 2007
a(10)-a(11) from Donovan Johnson, Sep 27 2008
a(12)-a(13) from Giovanni Resta, Mar 21 2017
a(14)-a(15) from Bert Dobbelaere, May 30 2025

A059766 Initial (unsafe) primes of Cunningham chains of first type with length exactly 6.

Original entry on oeis.org

89, 63419, 127139, 405269, 810809, 1069199, 1178609, 1333889, 1598699, 1806089, 1958249, 2606069, 2848949, 3241289, 3339989, 3784199, 3962039, 4088879, 4444829, 4664249, 4894889, 4897709, 5132999, 5215499, 5238179, 6026309, 6059519, 6088529, 6490769, 6676259
Offset: 1

Views

Author

Labos Elemer, Feb 21 2001

Keywords

Comments

Special terms of A059453. Not identical to A023330 of which 1122659, 2164229, 2329469, ..., etc. are omitted since they have exact length 7 or larger.
Unsafe primes starting complete chains of length 6.

Examples

			89 is a term because (89-1)/2 = 44 and 64*89+63 = 5759 = 13*443 are composites, while 89, 179, 359, 719, 1439, and 2879 are primes.
1122659 is not a term because it initiates a chain of length 7.
4658939 is not a term because (4658939-1)/2 = 2329469 is prime. - _Sean A. Irvine_, Oct 09 2022
		

Crossrefs

Extensions

Entry revised by N. J. A. Sloane Apr 01 2006
a(12) onward corrected and extended by Sean A. Irvine, Oct 09 2022

A084958 Initial prime of a prime chain of length n under the iteration x->5x+2.

Original entry on oeis.org

2, 3, 13, 19, 373, 135859, 135859, 18235423, 26588257, 93112729, 376038903103, 7087694466289, 120223669028389
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
a(11) > 8695354111. - Donovan Johnson, Sep 27 2008

Examples

			a(3)=13 since 13, f(13)=67 and f(67)=337 are primes when f(x) = 5x+2.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k = 1, q = 5*p+2}, While[ PrimeQ[q], q = 5*q+2; k++]; k]; a[n_] := Block[{p = 2}, While[c[p] < n, p = NextPrime@ p]; p]; Array[a, 7] (* Giovanni Resta, Mar 21 2017 *)

Extensions

a(10) from Donovan Johnson, Sep 27 2008
a(11)-a(12) from John Cerkan, Jan 20 2017
a(13) from Giovanni Resta, Mar 21 2017

A084956 Initial prime of the first prime chain of length n under the iteration x -> 3x+4.

Original entry on oeis.org

2, 3, 3, 23, 3203, 34613, 165443, 1274803, 26314573, 26314573, 590256673403, 15113026057043, 334156170011893, 3998669569752373
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
a(11) > 8695354111. - Donovan Johnson, Sep 27 2008

Examples

			a(3) = 3 since 3, f(3) = 13 and f(13) = 43 are primes when f(x) = 3*x + 4.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k=1, q=3*p + 4}, While[PrimeQ[q], q=3*q+4; k++]; k]; a[n_] := Block[{p = 2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7] (* Giovanni Resta, Mar 22 2017 *)

Extensions

a(9)-a(10) from Donovan Johnson, Sep 27 2008
a(11)-a(12) from John Cerkan, Jan 13 2017
a(13)-a(14) from Giovanni Resta, Mar 22 2017

A084957 Initial prime of the first prime chain of length n under the iteration x -> 4x + 3.

Original entry on oeis.org

2, 2, 2, 2, 1447, 9769, 17231, 17231, 32611, 18527009, 161205841, 3123824801, 26813406071, 4398156030379, 4398156030379
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = c*x + d.

Examples

			a(3) = 2 since 2, f(2) = 11, and f(11) = 47 are primes when f(x) = 4*x + 3.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k=1, q=4*p+3}, While[ PrimeQ[q], q=4*q+3; k++]; k]; a[n_] := Block[ {p=2}, While[c[p] < n, p = NextPrime@ p]; p]; Array[a, 9] (* Giovanni Resta, Mar 21 2017 *)
  • PARI
    has(p,n)=for(i=2,n, if(!isprime(p=4*p+3), return(0))); 1
    a(n)=forprime(p=2,, if(has(p,n), return(p))) \\ Charles R Greathouse IV, Jan 20 2017

Extensions

a(11)-a(12) from Donovan Johnson, Sep 27 2008
a(13) from John Cerkan, Jan 20 2017
a(14)-a(15) from Giovanni Resta, Mar 21 2017

A084959 Initial prime of a prime chain of length n under the iteration x->5x+6.

Original entry on oeis.org

2, 5, 7, 7, 79, 79, 345431, 21171649, 34640153, 4174239239, 268130051191, 268130051191, 253134809926049, 253134809926049, 253134809926049
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
a(11) > 8695354111. [Donovan Johnson, Sep 27 2008]

Examples

			a(3) = 13 since 7, f(7) = 41, and f(41) = 211 are primes when f(x) = 5*x + 6.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k=1, q = 5*p+6}, While[PrimeQ[q], q = 5*q+6; k++]; k]; a[n_] := Block[{p = 2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7] (* Giovanni Resta, Mar 22 2017 *)

Extensions

a(7) corrected and a(8)-a(10) from Donovan Johnson, Sep 27 2008
a(11)-a(12) from John Cerkan, Jan 11 2017
a(13)-a(15) from Giovanni Resta, Mar 22 2017

A084961 Initial prime of the first prime chain of length n under the iteration x->6x+5.

Original entry on oeis.org

2, 2, 2, 2, 11, 13, 115571, 23586221, 53165771, 3398453717, 615502598677, 32504183957101, 164289842304587
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
a(11) > 10175130529. [Donovan Johnson, Sep 27 2008]

Examples

			a(3) = 2 since 2, f(2) = 17, and f(17) = 107 are primes when f(x) = 6*x + 5.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k=1, q=6*p+5}, While[ PrimeQ[q], q = 6*q+5; k++]; k]; a[n_] := Block[ {p=2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7] (* Giovanni Resta, Mar 22 2017 *)

Extensions

a(8)-a(10) from Donovan Johnson, Sep 27 2008
a(11)-a(12) from John Cerkan, Jan 11 2017
a(13) from Giovanni Resta, Mar 22 2017

A339581 Indices of records in A063377.

Original entry on oeis.org

1, 2, 89, 1122659, 19099919, 85864769, 26089808579, 554688278429, 4090932431513069, 95405042230542329
Offset: 1

Views

Author

N. J. A. Sloane, Dec 24 2020

Keywords

Comments

The records themselves begin 0,5,6,7,8,9,10,12,13,14.
a(11) <= 90616211958465842219 = A005602(15). Between a(10) and this upper bound could be another record which might not be listed in A005602.
a(n) == 9 mod 10 for n > 2 (see A063377). - Michael S. Branicky, Dec 24 2020

References

  • Carl Pomerance, Problem 81:21 (= 321), in R. K. Guy link.

Crossrefs

Formula

a(n) = A057331(n + 2) for n >= 2. - David A. Corneth, Dec 25 2020

Extensions

a(6) corrected and a(7) found by David A. Corneth, Dec 24 2020.
a(8)-a(10) were taken from A057331 and the bound on a(11) was taken from A005602. - David A. Corneth and Amiram Eldar, Dec 25 2020

A339580 Indices of records in A339579.

Original entry on oeis.org

1, 3, 90, 1122660, 19099920, 85864770, 26089808580, 554688278430, 4090932431513070, 95405042230542330
Offset: 1

Views

Author

N. J. A. Sloane, Dec 24 2020

Keywords

Comments

The records themselves begin 4,5,6,7,8,9,10,12,13,14.
a(11) <= 90616211958465842220.

Examples

			90 is in the sequence as A339579(90) = 6 (90*2^k - 1 is prime for k = 0..5 and composite for k = 6) and A339579(m) < 6 for m < 90. - _David A. Corneth_, Dec 24 2020
		

References

  • Carl Pomerance, Problem 81:21 (= 321), in R. K. Guy problem list.

Crossrefs

Formula

a(n) = A339581(n) + 1 for n >= 2. - David A. Corneth, Dec 24 2020

Extensions

a(8)-a(10) were taken from A057331 and the bound on a(11) was taken from A005602. - David A. Corneth and Amiram Eldar, Dec 25 2020

A059690 Number of distinct Cunningham chains of first kind whose initial prime (cf. A059453) <= 2^n.

Original entry on oeis.org

1, 2, 2, 2, 3, 5, 7, 13, 20, 31, 52, 83, 142, 242, 412, 742, 1308, 2294, 4040, 7327, 13253, 24255, 44306, 81700, 150401, 277335, 513705, 954847, 1780466, 3325109, 6224282, 11676337, 21947583, 41327438
Offset: 1

Views

Author

Labos Elemer, Feb 06 2001

Keywords

Examples

			a(11)-a(10) = 21 means that between 1024 and 2048 exactly 21 primes introduce Cunningham chains: {1031, 1049, 1103, 1223, 1229, 1289, 1409, 1451, 1481, 1499, 1511, 1559, 1583, 1601, 1733, 1811, 1889, 1901, 1931, 1973, 2003}.
Their lengths are 2, 3 or 4. Thus the complete chains spread over more than one binary size-zone: {1409, 2819, 5639, 11279}. The primes 1439 and 2879 also form a chain but 1439 is not at the beginning of that chain, 89 is.
		

Crossrefs

Programs

  • Mathematica
    c = 0; k = 1; Do[ While[k <= 2^n, If[ PrimeQ[k] && !PrimeQ[(k - 1)/2] && PrimeQ[2k + 1], c++ ]; k++ ]; Print[c], {n, 1, 29}]
  • Python
    from itertools import count, islice
    from sympy import isprime, primerange
    def c(p): return not isprime((p-1)//2) and isprime(2*p+1)
    def agen():
        s = 1
        for n in count(2):
            yield s; s += sum(1 for p in primerange(2**(n-1)+1, 2**n) if c(p))
    print(list(islice(agen(), 20))) # Michael S. Branicky, Oct 09 2022

Extensions

Edited and extended by Robert G. Wilson v, Nov 23 2002
Title and a(30)-a(31) corrected, and a(32) from Sean A. Irvine, Oct 02 2022
a(33)-a(34) from Michael S. Branicky, Oct 09 2022
Previous Showing 11-20 of 22 results. Next