cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A228032 Primes of the form 8^n + 3.

Original entry on oeis.org

11, 67, 4099, 32771, 262147, 1073741827, 19342813113834066795298819
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A217354 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), this sequence (k=8, h=3), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..300] | IsPrime(a) where a is  8^n+3];
  • Mathematica
    Select[Table[8^n + 3, {n, 0, 300}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A243429 Primes of the form 2^n + 39.

Original entry on oeis.org

41, 43, 47, 71, 103, 167, 1063, 2087, 8231, 131111, 536870951, 8589934631, 549755813927, 8796093022247, 154742504910672534362390567, 40564819207303340847894502572071, 162259276829213363391578010288167, 2722258935367507707706996859454145691687
Offset: 1

Views

Author

Vincenzo Librandi, Jun 05 2014

Keywords

Comments

Associated n: 1, 2, 3, 5, 6, 7, 10, 11, 13, 17, 29, 33, 39, 43, 87, 105, 107, 131, 253, 329, ....

Crossrefs

Cf. primes of the form 2^n+k: A092506 (k=1), A057733 (k=3), A123250 (k=5), A104066 (k=7), A104070 (k=9), A156940 (k=11), A104067 (k=13), A144487 (k=15), A156973 (k=17), A104068 (k=19), A156983 (k=21), A176922 (k=23), A104072 (k=25), A104071 (k=27), A156974 (k=29), A104069 (k=31), A176926 (k=33), A176927 (k=35), A176924 (k=37), this sequence (k=39), A176925 (k=41), A243430 (k=43), A243431 (k=45), A243432 (k=47), A104073 (k=49).

Programs

  • Magma
    [a: n in [0..500] | IsPrime(a) where a is 2^n+39];
  • Mathematica
    Select[Table[2^n + 39, {n, 0, 500}], PrimeQ]

A228029 Primes of the form 5^n + 6.

Original entry on oeis.org

7, 11, 31, 131, 631, 1220703131
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A089142 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), this sequence (k=5, h=6), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is  5^n+6];
  • Mathematica
    Select[Table[5^n + 6, {n, 0, 200}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A228030 Primes of the form 7^n + 6.

Original entry on oeis.org

7, 13, 349, 33232930569607, 2651730845859653471779023381607
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A217130 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), this sequence (k=7, h=6), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..300] | IsPrime(a) where a is  7^n+6];
  • Mathematica
    Select[Table[7^n + 6, {n, 0, 300}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A228031 Primes of the form 7^n + 10.

Original entry on oeis.org

11, 17, 59, 353, 2411, 117659, 823553, 1977326753, 9387480337647754305659, 3219905755813179726837617, 44567640326363195900190045974568017, 616873509628062366290756156815389726793178417, 30226801971775055948247051683954096612865741953
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A217132 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), this sequence (k=7, h=10), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..300] | IsPrime(a) where a is  7^n+10];
  • Mathematica
    Select[Table[7^n + 10, {n, 0, 300}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A023568 Number of distinct prime divisors of prime(n)-3.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 3, 3
Offset: 1

Views

Author

Keywords

Comments

a(n) = 1 if prime(n) is in A057733. - Robert Israel, Dec 28 2015

Crossrefs

Programs

  • Maple
    0,0,seq(nops(numtheory:-factorset(ithprime(i)-3)), i=3..100); # Robert Israel, Dec 28 2015
  • Mathematica
    Join[{0,0},PrimeNu/@(Prime[Range[3,100]]-3)] (* Harvey P. Dale, Sep 09 2017 *)

A228027 Primes of the form 4^k + 9.

Original entry on oeis.org

13, 73, 1033, 262153, 1073741833, 73786976294838206473, 4835703278458516698824713
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Comments

Subsequence of A104070. - Elmo R. Oliveira, Nov 28 2023

Examples

			262153 is a term because 4^9 + 9 = 262153 is prime.
		

Crossrefs

Cf. A000040, A217350 (corresponding k's).
Cf. Primes of the form r^k + h: A092506 (r=2, h=1), A057733 (r=2, h=3), A123250 (r=2, h=5), A104066 (r=2, h=7), A104070 (r=2, h=9), A057735 (r=3, h=2), A102903 (r=3, h=4), A102870 (r=3, h=8), A102907 (r=3, h=10), A290200 (r=4, h=1), A228026 (r=4, h=3), this sequence (r=4, h=9), A182330 (r=5, h=2), A228029 (r=5, h=6), A102910 (r=5, h=8), A182331 (r=6, h=1), A104118 (r=6, h=5), A104115 (r=6, h=7), A104065 (r=7, h=4), A228030 (r=7, h=6), A228031 (r=7, h=10), A228032 (r=8, h=3), A228033 (r=8, h=5), A144360 (r=8, h=7), A145440 (r=8, h=9), A228034 (r=9, h=2), A159352 (r=10, h=3), A159031 (r=10, h=7).

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 4^n+9];
  • Mathematica
    Select[Table[4^n + 9, {n, 0, 200}],PrimeQ]

Formula

a(n) = 4^A217350(n) + 9. - Elmo R. Oliveira, Nov 28 2023

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A228033 Primes of the form 8^k + 5.

Original entry on oeis.org

13, 2787593149816327892691964784081045188247557, 15177100720513508366558296147058741458143803430094840009779784451085189728165691397
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Comments

a(4) = 8^64655 + 5 = 1.919...*10^58389 is too large to include. - Amiram Eldar, Jul 23 2025

Crossrefs

Cf. A217355 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), this sequence (k=8, h=5), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [1..300] | IsPrime(a) where a is 8^n+5];
  • Mathematica
    Select[Table[8^n + 5, {n, 4000}], PrimeQ]

A023569 Greatest prime divisor of prime(n) - 3.

Original entry on oeis.org

2, 2, 2, 5, 7, 2, 5, 13, 7, 17, 19, 5, 11, 5, 7, 29, 2, 17, 7, 19, 5, 43, 47, 7, 5, 13, 53, 11, 31, 2, 67, 17, 73, 37, 11, 5, 41, 17, 11, 89, 47, 19, 97, 7, 13, 11, 7, 113, 23, 59, 17, 31, 127, 13, 19, 67, 137, 139, 7, 29, 19, 11, 31, 157, 41, 167, 43, 173, 7, 89
Offset: 3

Views

Author

Keywords

Comments

a(n) = 2 if prime(n) is in A057733. - Robert Israel, Dec 28 2015

Crossrefs

Programs

  • Maple
    seq(max(numtheory:-factorset(ithprime(i)-3)), i=3..100); # Robert Israel, Dec 28 2015
  • Mathematica
    Table[FactorInteger[Prime[n] - 3] [[-1, 1]], {n, 3, 100}] (* Vincenzo Librandi, Dec 29 2015 *)
  • PARI
    a(n) = vecmax(factor(prime(n)-3)[,1]); \\ Michel Marcus, Dec 29 2015

Extensions

Corrected by Robert Israel, Dec 29 2015

A156973 Primes of the form 2^k + 17.

Original entry on oeis.org

19, 8209, 2097169, 8589934609, 2417851639229258349412369, 680564733841876926926749214863536422929, 62165404551223330269422781018352605012557018849668464680057997111644937126566671941649
Offset: 1

Views

Author

Edwin Dyke (ed.dyke(AT)btinternet.com), Feb 19 2009

Keywords

Examples

			19 = 2^1 + 17 is in the sequence;
8209 = 2^13 + 17 is in the sequence.
		

Crossrefs

Cf. A000040, A057200, A057733 (2^k + 3), A123250 (2^k + 5), A104066 (2^k + 7), A156940 (2^k + 11), A104067 (2^k + 13).

Programs

  • Magma
    [ a: n in [1..400] | IsPrime(a) where a is 2^n+17 ]; // Vincenzo Librandi, Nov 27 2010
  • Mathematica
    Delete[Union[Table[If[PrimeQ[2^n + 17], 2^n + 17, 0], {n, 1, 300}]],1]

Formula

a(n) = 2^A057200(n) + 17. - Elmo R. Oliveira, Nov 08 2023

Extensions

a(7) from Vincenzo Librandi, Apr 29 2010
Previous Showing 11-20 of 33 results. Next