cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A343542 Number of ways to partition n labeled elements into sets of different sizes of at least 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 463, 793, 3004, 5006, 14444, 23817, 62323, 14805403, 35175993, 177791475, 745977222, 2333540804, 7589340982, 29027728612, 81515120641, 23232813583331, 69799133324911, 436678552247551, 2215090972333651, 13529994077951557, 48863594588239153
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 28 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i>n, 0, b(n, i+1)+binomial(n, i)*b(n-i, i+1)))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=0..31);  # Alois P. Heinz, Apr 28 2021
  • Mathematica
    nmax = 31; CoefficientList[Series[Product[(1 + x^k/k!), {k, 5, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -(n - 1)! Sum[DivisorSum[k, # (-#!)^(-k/#) &, # > 4 &] a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 31}]

Formula

E.g.f.: Product_{k>=5} (1 + x^k/k!).

A182931 Generalized Bell numbers; square array read by ascending antidiagonals, A(n, k) for n >= 0 and k >= 1.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 5, 1, 0, 1, 15, 1, 0, 0, 1, 52, 4, 1, 0, 0, 1, 203, 11, 1, 0, 0, 0, 1, 877, 41, 1, 1, 0, 0, 0, 1, 4140, 162, 11, 1, 0, 0, 0, 0, 1, 21147, 715, 36, 1, 1, 0, 0, 0, 0, 1, 115975, 3425, 92, 1, 1, 0, 0, 0, 0, 0, 1, 678570, 17722, 491, 36, 1, 1, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Peter Luschny, Apr 05 2011

Keywords

Examples

			Array starts:
[k=      1       2       3       4       5]
[n=0]    1,      1,      1,      1,      1,
[n=1]    1,      0,      0,      0,      0,
[n=2]    2,      1,      0,      0,      0,
[n=3]    5,      1,      1,      0,      0,
[n=4]   15,      4,      1,      1,      0,
[n=5]   52,     11,      1,      1,      1,
[n=6]  203,     41,     11,      1,      1,
[n=7]  877,    162,     36,      1,      1,
[n=8] 4140,    715,     92,     36,      1,
   A000110,A000296,A006505,A057837,A057814, ...
		

Crossrefs

Row sums are A097147 for n >= 1.

Programs

  • Maple
    egf := k -> exp(exp(x)*(1-GAMMA(k,x)/GAMMA(k)));
    T := (n,k) -> n!*coeff(series(egf(k),x,n+1),x,n):
    seq(print(seq(T(n,k),k=1..8)),n=0..8);
  • Mathematica
    egf[k_] := Exp[Exp[x] (1 - Gamma[k, x]/Gamma[k])];
    T[n_, k_] := n! SeriesCoefficient[egf[k], {x, 0, n}];
    Table[T[n-k+1, k], {n, 0, 11}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Aug 13 2019 *)

Formula

E.g.f.: exp(exp(x)*(1-Gamma(k,x)/Gamma(k))); Gamma(k,x) the incomplete Gamma function.

A282988 Triangle of partitions of an n-set into boxes of size >= m.

Original entry on oeis.org

1, 2, 1, 5, 1, 1, 15, 4, 1, 1, 52, 11, 1, 1, 1, 203, 41, 11, 1, 1, 1, 877, 162, 36, 1, 1, 1, 1, 4140, 715, 92, 36, 1, 1, 1, 1, 21147, 3425, 491, 127, 1, 1, 1, 1, 1, 115975, 17722, 2557, 337, 127, 1, 1, 1, 1, 1, 678570, 98253, 11353, 793, 463, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Feb 26 2017

Keywords

Examples

			Triangle T(n,m) begins:
    1;
    2,   1;
    5,   1,   1;
   15,   4,   1,   1;
   52,  11,   1,   1,   1;
  203,  41,  11,   1,   1,   1;
  877, 162,  36,   1,   1,   1,   1;
  ...
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n=0, 1, add(
          T(n-j, k)*binomial(n-1, j-1), j=k..n))
        end:
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Sep 28 2017
  • Mathematica
    T[n_, m_] := T[n, m] = Which[Or[n == m, n == 0], 1, m == 0, 0, True, Sum[Binomial[n - 1, i + m - 1] T[n - i - m, m], {i, 0, n - m}]]; Table[T[n, m], {n, 11}, {m, n}] // Flatten (* Michael De Vlieger, Feb 26 2017 *)
  • Maxima
    T(n,m):=if n=m or n=0 then 1 else if m=0 then 0 else sum(binomial(n-1, i+m-1)*T(n-i-m,m), i, 0, n-m);

Formula

T(n,m) = Sum_{i=0..n-m} C(n-1, i+m-1)*T(n-i-m, m).
E.g.f. m column of T(n,m) is exp(exp(x)-Sum_{k=0..m} 1/k!x^k).
Previous Showing 11-13 of 13 results.