cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A075466 Trajectory of 266718 under the Reverse and Add! operation carried out in base 4, written in base 10.

Original entry on oeis.org

266718, 1017375, 2019150, 4934715, 20413980, 34239885, 64220175, 127195950, 321080475, 1286586060, 2154739965, 4288508415, 8571775230, 21401016315, 85781907180, 149736661725, 278082371775, 1369020907200, 1433193762225
Offset: 0

Views

Author

Klaus Brockhaus, Sep 18 2002

Keywords

Comments

266718 = A075421(358) is the smallest term > 318 of A075421 whose base 4 trajectory provably does not contain a palindrome. A proof along the lines of Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2, can be based on the formula given below. - The generating function given describes the sequence from a(26) onward; the g.f. for the complete sequence is known but more than twice as big.

Examples

			266718 (decimal) = 1001013132 -> 1001013132 + 2313101001 = 3320120133 = 1017375 (decimal).
		

Crossrefs

Programs

  • Mathematica
    NestWhileList[# + IntegerReverse[#, 4] &, 266718,  # !=
    IntegerReverse[#, 4] &, 1, 23] (* Robert Price, Oct 18 2019 *)
  • PARI
    {m=266718; stop=19; c=0; while(c0,d=divrem(k,4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}

Formula

a(0), ..., a(18) as above; a(19) = 2780823717750; a(20) = 5492189757120; a(21) = 5749636151985; a(22) = 11156010444150; a(23) = 21968759028480; a(24) = 22226205423345; a(25) = 44109148986870; for n > 25 and n = 2 (mod 6): a(n) = 5*4^(2*k+14)-83865605*4^k where k = (n-2)/6; n = 3 (mod 6): a(n) = 5*4^(2*k+14)+3941683435*4^k-15 where k = (n-3)/6; n = 4 (mod 6): a(n) = 10*4^(2*k+14)+2515968150*4^k-10 where k = (n-4)/6; n = 5 (mod 6): a(n) = 20*4^(2*k+14)-335462420*4^k where k = (n-5)/6; n = 0 (mod 6): a(n) = 20*4^(2*k+14)+3690086620*4^k-15 where k = (n-6)/6; n = 1 (mod 6): a(n) = 40*4^(2*k+14)+2012774520*4^k-10 where k = (n-7)/6. G.f.: -15*(47049901525664*x^11+23708157972464*x^10+23433347158016*x^9-46912496118440*x^8-23502049861628*x^7-23433347158016*x^6-11908468626600*x^5-6137441522940*x^4-5862630708480*x^3+11771063219370*x^2+5931333412095*x+5862630708480)/((x-1)*(x^2+x+1)*(2*x^3-1)*(2*x^3+1)*(4*x^3-1))

A075467 Trajectory of 270798 under the Reverse and Add! operation carried out in base 4, written in base 10.

Original entry on oeis.org

270798, 1005135, 1994670, 5058075, 20047500, 33313725, 66545850, 112201785, 225464610, 368353785, 835135950, 1587633825, 2841028950, 5347819200, 5598498225, 10862757750, 21453946560, 22456662705, 43576370550
Offset: 0

Views

Author

Klaus Brockhaus, Sep 18 2002

Keywords

Comments

The base 4 trajectory of 270798 = A075421(370) provably does not contain a palindrome. A proof along the lines of Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2, can be based on the formula given below. - The generating function given describes the sequence from a(11) onward; the g.f. for the complete sequence is known but nearly twice as big.

Examples

			270798 (decimal) = 1002013032 -> 1002013032 + 2303102001 = 3311121033 = 1005135 (decimal).
		

Crossrefs

Programs

  • Mathematica
    NestWhileList[# + IntegerReverse[#, 4] &, 270798,  # !=
    IntegerReverse[#, 4] &, 1, 23] (* Robert Price, Oct 18 2019 *)
  • PARI
    {m=270798; stop=20; c=0; while(c0,d=divrem(k,4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}

Formula

a(0), ..., a(10) as above; for n > 10 and n = 5 (mod 6): a(n) = 5*4^(2*k+10)+15341035*4^k-15 where k = (n+1)/6; n = 0 (mod 6): a(n) = 10*4^(2*k+10)+9792150*4^k-10 where k = n/6; n = 1 (mod 6): a(n) = 20*4^(2*k+10)-1305620*4^k where k = (n-1)/6; n = 2 (mod 6): a(n) = 20*4^(2*k+10)+14361820*4^k-15 where k = (n-2)/6; n = 3 (mod 6): a(n) = 40*4^(2*k+10)+7833720*4^k-10 where k = (n-3)/6; n = 4 (mod 6): a(n) = 80*4^(2*k+10)-1305620*4^k where k = (n-4)/6. G.f.: -15*(1426085120*x^11+749251744*x^10+419191024*x^9-1430263104*x^8-715827880*x^7-369055228*x^6-352343296*x^5-222825800*x^4-155978060*x^3+356521280*x^2+189401930*x+105842255)/((x-1)*(x^2+x+1)*(2*x^3-1)*(2*x^3+1)*(4*x^3-1))

A062128 In base 2: start with n; if palindrome, stop; otherwise add to itself with digits reversed; a(n) gives palindrome at which it stops, or -1 if no palindrome is ever reached.

Original entry on oeis.org

0, 1, 11, 11, 101, 101, 1001, 111, 1001, 1001, 1111, 11011, 1111, 11011, 10101, 1111, 10001, 10001, 11011, 1100011, 1100011, 10101, -1, 111111, 11011, 1100011, -1, 11011, -1, 111111, 101101, 11111, 100001, 100001, 110011, -1, 101101, -1, 111111, 1100011, 101101, -1, 111111, 1100011, 1100011
Offset: 0

Views

Author

Klaus Brockhaus, Jun 06 2001

Keywords

Comments

The analog of A033865 in base 2.

Examples

			23: 10111 -> 10111 + 11101 = 110100 -> 110100 + 1011 = 111111, so a(23) = 111111.
		

Crossrefs

Programs

  • ARIBAS
    stop := 500; for k := 0 to 60 do c := 0; m := k; rev := bit_reverse(m); while m <> rev and c < stop do inc(c); m := m + rev; rev := bit_reverse(m); end; if c < stop then bit_write(m); else write(-1); end; write(" "); end;
  • Mathematica
    limit = 10^4; (* Assumes that there is no palindrome if none is found before "limit" iterations *)
    BaseForm[Table[np = n; i = 0;
      While[np != IntegerReverse[np, 2] && i < limit,
       np = np + IntegerReverse[np, 2]; i++];
    If[i >= limit, -1, np], {n, 0, 44}], 2] (* Robert Price, Oct 14 2019 *)

A075299 Trajectory of 290 under the Reverse and Add! operation carried out in base 4, written in base 10.

Original entry on oeis.org

290, 835, 1610, 4195, 17060, 23845, 46490, 89080, 138125, 255775, 506510, 1238395, 5127260, 8616205, 15984335, 31949470, 79793675, 315404860, 569392925, 1060061935, 2114961710, 5206421995, 20997654620, 35262166285
Offset: 0

Views

Author

Klaus Brockhaus, Sep 12 2002

Keywords

Comments

290 is conjectured (cf. A066450) to be the smallest number such that the Reverse and Add! algorithm in base 4 does not lead to a palindrome. Unlike 318 (cf. A075153) its trajectory does not exhibit any recognizable regularity, so that the method by which the base 4 trajectory of 318 as well as the base 2 trajectories of 22 (cf. A061561), 77 (cf. A075253), 442 (cf. A075268) etc. can be proved to be palindrome-free (cf. Links), is not applicable here.

Examples

			290 (decimal) = 10202 -> 10202 + 20201 = 31003 = 835 (decimal).
		

Crossrefs

Programs

  • Mathematica
    NestWhileList[# + IntegerReverse[#, 4] &, 290,  # !=
    IntegerReverse[#, 4] &, 1, 23] (* Robert Price, Oct 18 2019 *)
  • PARI
    {m=290; stop=26; c=0; while(c0,d=divrem(k,4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}

A062129 In base 2: start with n; add to itself with digits reversed; if palindrome, stop; otherwise repeat; a(n) gives palindrome at which it stops, or -1 if no palindrome is ever reached.

Original entry on oeis.org

0, 11, 11, 1001, 101, 1111, 1001, 10101, 1001, 11011, 1111, 11011, 1111, 11011, 10101, 101101, 10001, 110011, 11011, 1100011, 1100011, 111111, -1, 111111, 11011, 1100011, -1, 11111111, -1, 111111, 101101, 1011101, 100001, 1100011, 110011, -1, 101101, -1, 111111, 1100011, 101101, -1, 111111
Offset: 0

Views

Author

Klaus Brockhaus, Jun 06 2001

Keywords

Comments

The analog of A061563 in base 2. Differs from A062128 only for those n, which are palindromes in base 2.

Examples

			23: 10111 -> 10111 + 11101 = 110100 -> 110100 + 1011 = 111111, so a(23) = 111111.
		

Crossrefs

Programs

  • ARIBAS
    stop := 500; for k := 0 to 60 do c := 0; m := k; test := true; while test and c < stop do inc(c); m := m + bit_reverse(m); test := m <> bit_reverse(m); end; if c < stop then bit_write(m); else write(-1); end; write(" "); end;

A066450 a(n) is the conjectured value of the minimal number to which repeated application of the "reverse and add!" algorithm in base n does not terminate in a palindrome. If there is no such number in base n, then a(n) := -1.

Original entry on oeis.org

22, 103, 290, 708, 1079, 2656, 1021, 593, 196, 1011, 237, 2701, 361, 447, 413, 3297, 519, 341, 379, 711, 461, 505, 551, 1022, 649, 701, 755, 811, 869, 929, 991, 1055, 1799, 1922, 1259, 1331, 1405, 1481, 1559, 1639, 1595, 1762, 1891, 1934, 2069, 2161
Offset: 2

Views

Author

Frederick Magata (frederick.magata(AT)uni-muenster.de), Dec 29 2001

Keywords

Comments

It would be nice to remove the word "Conjectured" from the description. - N. J. A. Sloane
All the terms in this sequence except the first are only conjectures. (See Walker, Irvin on a(10)=196 and Brockhaus on a(2)=22.)
An obvious algorithm is: start with r := n and check whether the "reverse and add!" algorithm in base n halts in a palindrome or not. If it stops, increment r by one and repeat the process, else return r. To obtain the values above, an upper limit of 100 "reverse and add!" steps was used.
Conjectures: a(n) shows the same asymptotic behavior as n^2. For infinitely many n, a(n) = n^2 - n - 1. Again, it is an open question, if the values of the sequence really lead to infinitely many "reverse and add!" steps or not. Is the sequence always positive?

Programs

  • Mathematica
    limit = 10^3; (* Assumes that there is no palindrome if none is found before "limit" iterations *)
    Table[SelectFirst[Range[10000],
      Length@NestWhileList[ # + IntegerReverse[#, n] &,  #, # !=
            IntegerReverse[#, n]  &, 1, limit] == limit + 1 &] , {n, 2,
    47}] (* Robert Price, Oct 18 2019 *)

Extensions

David W. Wilson remarks (Jan 02 2002): I verified these using 1000 digits as a stopping point (this would be >>1000 iterations). I am highly confident of these values.

A076247 Trajectory of 1059774 under the Reverse and Add! operation carried out in base 4, written in base 10.

Original entry on oeis.org

1059774, 4187583, 8355006, 20822715, 83391660, 144328605, 268919295, 1339676160, 1349598705, 2683144950, 5361370860, 9358549725, 17380163775, 85563883200, 89574690225, 173801637750, 343262166720, 359352580785
Offset: 0

Views

Author

Klaus Brockhaus, Oct 03 2002

Keywords

Comments

1059774 = A075421(1096) is the fourth term of A075421 whose base 4 trajectory provably does not contain a palindrome. A proof along the lines of Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2, can be based on the formula given below. - The generating function given describes the sequence from a(16) onward; the g.f. for the complete sequence is known but nearly twice as big.

Examples

			1059774 (decimal) = 10002232332 -> 10002232332 + 23323220001 = 33332112333 = 4187583 (decimal).
		

Crossrefs

Programs

  • Mathematica
    NestWhileList[# + IntegerReverse[#, 4] &, 1059774,  # !=
    IntegerReverse[#, 4] &, 1, 23] (* Robert Price, Oct 18 2019 *)
  • PARI
    {m=1059774; stop=19; c=0; while(c0,d=divrem(k,4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}

Formula

a(0), ..., a(15) as above; for n > 15 and n = 4 (mod 6): a(n) = 5*4^(2*k+12)-5237765*4^k where k = (n+2)/6; n = 5 (mod 6): a(n) = 5*4^(2*k+12)+246174955*4^k-15 where k = (n+1)/6; n = 0 (mod 6): a(n) = 10*4^(2*k+12)+157132950*4^k-10 where k = n/6; n = 1 (mod 6): a(n) = 20*4^(2*k+12)-20951060*4^k where k = (n-1)/6; n = 2 (mod 6): a(n) = 20*4^(2*k+12)+230461660*4^k-15 where k = (n-2)/6; n = 3 (mod 6): a(n) = 40*4^(2*k+12)+125706360*4^k-10 where k = (n-3)/6. G.f.: -15*(185397326496*x^11+95559181296*x^10+91268404224*x^9-183251937960*x^8-92341098492*x^7 -91268404224*x^6-48628806952*x^5-27174921532*x^4-22884144448*x^3+46483418410*x^2 +23956838719*x+22884144448)/((x-1)*(x^2+x+1)*(2*x^3-1)*(2*x^3+1)*(4*x^3-1))

A076248 Trajectory of 1059831 under the Reverse and Add! operation carried out in base 4, written in base 10.

Original entry on oeis.org

1059831, 4728312, 7831065, 14433270, 24913965, 56412450, 92165625, 208908750, 396926625, 710289750, 1336954560, 1398889905, 2715199350, 5363547840, 5614238385, 10894222710, 21453945600, 21701687025, 43073052150
Offset: 0

Views

Author

Klaus Brockhaus, Oct 03 2002

Keywords

Comments

1059831 = A075421(1105 ) is the fifth term of A075421 whose base 4 trajectory provably does not contain a palindrome. A proof along the lines of Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2, can be based on the formula given below.

Examples

			1059831 (decimal) = 10002233313 -> 10002233313 + 31333220001 = 102002113320 = 4728312 (decimal).
		

Crossrefs

Programs

  • Mathematica
    NestWhileList[# + IntegerReverse[#, 4] &, 1059831,  # != IntegerReverse[ #, 4] &, 1, 23] (* Robert Price, Oct 19 2019 *)
  • PARI
    {m=1059831; stop=19; c=0; while(c0,d=divrem(k,4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}

Formula

a(0), ..., a(7) as above; for n > 7 and n = 2 (mod 6): a(n) = 5*4^(2*k+9)+3836395*4^k-15 where k = (n+4)/6; n = 3 (mod 6): a(n) = 10*4^(2*k+9)+2450070*4^k-10 where k = (n+3)/6; n = 4 (mod 6): a(n) = 20*4^(2*k+9)-326420*4^k where k = (n+2)/6; n = 5 (mod 6): a(n) = 20*4^(2*k+9)+3544540*4^k-15 where k = (n+1)/6; n = 0 (mod 6): a(n) = 40*4^(2*k+9)+1927800*4^k-10 where k = n/6; n = 1 (mod 6): a(n) = 80*4^(2*k+9)-322580*4^k where k = (n-1)/6. G.f.: -3*(668508000*x^19+444361200*x^18+222142800*x^17-528080680*x^16-356464620*x^15 -125753060*x^14-299532884*x^13-188180432*x^12-143040640*x^11+128992350*x^10+90219415*x^9 +38288125*x^8+28112975*x^7+6666425*x^6+5752375*x^5+424135*x^4+3044705*x^3+2610355*x^2 + 1576104*x+353277)/((x-1)*(x^2+x+1)*(2*x^3-1)*(2*x^3+1)*(4*x^3-1))

A077408 Trajectory of 103 under the Reverse and Add! operation carried out in base 3, written in base 10.

Original entry on oeis.org

103, 230, 436, 776, 2424, 3856, 7400, 20856, 30928, 60920, 220248, 242704, 432896, 857152, 1460408, 2754688, 5134016, 16206744, 24437488, 44623424, 138104472, 201737128, 401511824, 1438324704, 1601682040, 2820726320, 5622321088
Offset: 0

Views

Author

Klaus Brockhaus, Nov 05 2002

Keywords

Comments

103 = A077405(0) is conjectured (cf. A066450) to be the smallest number such that the Reverse and Add! algorithm in base 3 does not lead to a palindrome. Its trajectory does not exhibit any recognizable regularity, so that the method by which the base-2 trajectories of 22 (cf. A061561), 77 (cf. A075253), 442 (cf. A075268) etc. as well as the base-4 trajectories of 318 (cf. A075153), 266718 (cf. A075466), 270798 (cf. A075467) etc. can be proved to be palindrome-free (cf. Links), is not applicable here.

Examples

			103 (decimal) = 10211 -> 10211 + 11201 = 22112 = 230 (decimal).
		

Crossrefs

Programs

  • ARIBAS
    m := 103; stop := 28; c := 0; while c < stop do write(m:group(0),","); k := m; rev := 0; while k > 0 do rev := 3*rev + (k mod 3); k := k div 3; end; inc(c); m := m+rev; end;

A213012 Trajectory of 26 under the Reverse and Add! operation carried out in base 2.

Original entry on oeis.org

26, 37, 78, 135, 360, 405, 744, 837, 1488, 1581, 3024, 3213, 6048, 6237, 12192, 12573, 24384, 24765, 48960, 49725, 97920, 98685, 196224, 197757, 392448, 393981, 785664, 788733, 1571328, 1574397, 3144192, 3150333
Offset: 0

Views

Author

Ben Branman, Jun 01 2012

Keywords

Comments

26 is the second-smallest number (after 22) whose base 2 trajectory does not contain a palindrome.
lim_{n -> infinity} a(n)/a(n-1) = 2 for n mod 2 = 0.
lim_{n -> infinity} a(n)/a(n-1) = 1 for n mod 2 = 1. - Branman
In 2001, Brockhaus proved that if the binary Reverse and Add trajectory of an integer contains an integer of one of four specific given forms, then the trajectory never reaches a palindrome. In the case of 26, that would be 3(2^(2k + 1) - 2^k), with k = 3 corresponding to 360. - Alonso del Arte, Jun 02 2012

Examples

			In binary, 26 is 11010.
a(1) = 37 because 11010 + 01011 = 100101, or 37.
a(2) = 78 because 100101 + 101001 = 1001110, or 78.
		

Crossrefs

Programs

  • Mathematica
    binRA[n_] := If[Reverse[IntegerDigits[n, 2]] == IntegerDigits[n, 2], n, FromDigits[Reverse[IntegerDigits[n, 2]], 2] + n]; NestList[binRA, 26, 100]
Previous Showing 11-20 of 20 results.