cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A062323 Triangle with a(n,n)=1, a(n,k)=(n-1)*a(n-1,k)+a(n-2,k) for n>k.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 7, 10, 7, 3, 1, 30, 43, 30, 13, 4, 1, 157, 225, 157, 68, 21, 5, 1, 972, 1393, 972, 421, 130, 31, 6, 1, 6961, 9976, 6961, 3015, 931, 222, 43, 7, 1, 56660, 81201, 56660, 24541, 7578, 1807, 350, 57, 8, 1, 516901, 740785, 516901, 223884
Offset: 0

Views

Author

Henry Bottomley, Jul 05 2001

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 0, 1;
[2] 1, 1, 1;
[3] 2, 3, 2, 1;
[4] 7, 10, 7, 3, 1;
[5] 30, 43, 30, 13, 4, 1;
[6] 157, 225, 157, 68, 21, 5, 1;
[7] 972, 1393, 972, 421, 130, 31, 6, 1;
[8] 6961, 9976, 6961, 3015, 931, 222, 43, 7, 1;
		

Crossrefs

Essentially the same as A058294, but more easy seen as a triangle. Columns include A001040, A001053, A058307, A058308, A058309. Other sequences appearing on the right hand side include A000012, A001477, A002061, A034262.

Programs

  • Haskell
    a062323 n k = a062323_tabl !! n !! k
    a062323_row n = a062323_tabl !! n
    a062323_tabl = map fst $ iterate f ([1], [0,1]) where
       f (us, vs) = (vs, ws) where
         ws = (zipWith (+) (us ++ [0]) (map (* v) vs)) ++ [1]
              where v = last (init vs) + 1
    -- Reinhard Zumkeller, Mar 05 2013

Formula

a(n, k)=k*a(n, k+1)+a(n, k+2) for n>k.

A093858 a(0) = 1, a(1)= 2, a(n) = (a(n+1) - a(n-1))/n, or a(n+1) = n*a(n) + a(n-1).

Original entry on oeis.org

1, 2, 3, 8, 27, 116, 607, 3758, 26913, 219062, 1998471, 20203772, 224239963, 2711083328, 35468323227, 499267608506, 7524482450817, 120890986821578, 2062671258417643, 37248973638339152, 709793170386861531
Offset: 0

Views

Author

Amarnath Murthy, Apr 19 2004

Keywords

Crossrefs

Similar recurrences: A001040, A001053, A058279, A058307. - Wolfdieter Lang, May 19 2010

Programs

  • Mathematica
    a = 1; b = 2; Print[a]; Print[b]; Do[c = n*b + a; Print[c]; a = b; b = c, {n, 1, 30}] (* Ryan Propper, Sep 14 2005 *)
    nxt[{n_,a_,b_}]:={n+1,b,b*n+a}; NestList[nxt,{1,1,2},20][[;;,2]] (* Harvey P. Dale, Dec 23 2023 *)

Formula

a(n) = -2*(BesselI[n, -2]*(2 BesselK[0, 2] - BesselK[1, 2]) + (-2 BesselI[0, 2] + BesselI[1, -2])*BesselK[n, 2]). - Ryan Propper, Sep 14 2005
E.g.f.: -3*Pi*(BesselI(1, 2)*BesselY(0, 2*I*sqrt(1-x)) + I*BesselY(1, 2*I)*BesselI(0, 2*sqrt(1-x))). Such e.g.f. computations were the result of an e-mail exchange with Gary Detlefs. After differentiation and setting x=0 one has to use simplifications. See the Abramowitz-Stegun handbook, p. 360, 9.1.16 and p. 375, 9.63. - Wolfdieter Lang, May 19 2010
Lim_{n->infinity} a(n)/(n-1)! = 2*BesselI(0,2) - BesselI(1,-2) = 6.1498074593094635982566633... - Vaclav Kotesovec, Jan 05 2013

Extensions

a(10)-a(20) from Ryan Propper, Sep 14 2005

A228340 Triangle read by rows: T(n,k) = (n-1)*T(n-1,k) + T(n-2,k), with T(n,n-1)=1, T(n,n-2)=n-2, for n >= 1, 0 <= k <= n-1.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 3, 4, 2, 1, 13, 17, 9, 3, 1, 68, 89, 47, 16, 4, 1, 421, 551, 291, 99, 25, 5, 1, 3015, 3946, 2084, 709, 179, 36, 6, 1, 24541, 32119, 16963, 5771, 1457, 293, 49, 7, 1, 223884, 293017, 154751, 52648, 13292, 2673, 447, 64, 8, 1
Offset: 1

Views

Author

N. J. A. Sloane, Aug 29 2013

Keywords

Examples

			Triangle begins:
1,
0,1,
1,1,1,
3,4,2,1,
13,17,9,3,1,
68,89,47,16,4,1,
421,551,291,99,25,5,1,
3015,3946,2084,709,179,36,6,1,
...
		

Crossrefs

Diagonals give A058307, A058279, A228341. Row sums give A001040.

Programs

  • Haskell
    a228340 n k = a228340_tabl !! (n-1) !! k
    a228340_row n = a228340_tabl !! (n-1)
    a228340_tabl = map (reverse . fst) $ iterate f ([1], [1,0]) where
       f (us, vs'@( : vs@(v : ))) = (vs', ws) where
         ws = 1 : (v + 1) : zipWith (+) us (map (* (v + 2)) vs)
    -- Reinhard Zumkeller, Aug 31 2013

A228341 Third diagonal (T(n,2)) of triangle in A228340.

Original entry on oeis.org

1, 2, 9, 47, 291, 2084, 16963, 154751, 1564473, 17363954, 209931921, 2746478927, 38660636899, 582656032412, 9361157155491, 159722327675759, 2884363055319153, 54962620378739666, 1102136770630112473, 23199834803611101599
Offset: 2

Views

Author

N. J. A. Sloane, Aug 29 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FullSimplify[-2*BesselI[1+n,-2] * (BesselK[2,2] + BesselK[3,2]) + 2*(BesselI[2,2] - BesselI[3,2]) * BesselK[1+n,2]],{n,2,20}] (* Vaclav Kotesovec, Feb 14 2014 *)
  • PARI
    v = [1, 2]; for(n=4, 21, v = concat(v, n*v[n-2] + v[n-3])); v \\ Rick L. Shepherd, Jan 22 2014

Formula

a(2) = 1, a(3) = 2; thereafter, a(n) = n*a(n-1) + a(n-2).
a(n) ~ c * n!, where c = BesselI(2,2)-BesselI(3,2) = 0.47620848845888... - Vaclav Kotesovec, Feb 14 2014

Extensions

More terms from Rick L. Shepherd, Jan 22 2014

A346960 a(0) = 0, a(1) = 1; a(n) = n * (n+1) * a(n-1) + a(n-2).

Original entry on oeis.org

0, 1, 6, 73, 1466, 44053, 1851692, 103738805, 7471045652, 672497847485, 73982234269002, 9766327421355749, 1523621059965765846, 277308799241190739721, 58236371461710021107256, 13977006459609646256481161, 3801803993385285491783983048, 1163365998982356970132155293849
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 13 2021

Keywords

Comments

a(n) is the numerator of fraction equal to the continued fraction [0; 2, 6, 12, 20, 30, ..., n*(n+1)].

Examples

			a(1) =    1 because 1/(1*2)                               = 1/2.
a(2) =    6 because 1/(1*2 + 1/(2*3))                     = 6/13.
a(3) =   73 because 1/(1*2 + 1/(2*3 + 1/(3*4)))           = 73/158.
a(4) = 1466 because 1/(1*2 + 1/(2*3 + 1/(3*4 + 1/(4*5)))) = 1466/3173.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = n (n + 1) a[n - 1] + a[n - 2]; Table[a[n], {n, 0, 17}]
    Table[Numerator[ContinuedFractionK[1, k (k + 1), {k, 1, n}]], {n, 0, 17}]

Formula

a(n) ~ c * n^(2*n + 2) / exp(2*n), where c = 3.2100642122891047165999468271849715691225751316633504931782933233387646256... - Vaclav Kotesovec, Aug 14 2021

A246654 T(n,k) = 2*(K(n,2)*I(k,2) - (-1)^(n+k)*I(n,2)*K(k,2)), where I(n,x) and K(n,x) are Bessel functions; triangle read by rows for 0 <= k <= n.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 10, 7, 3, 1, 0, 43, 30, 13, 4, 1, 0, 225, 157, 68, 21, 5, 1, 0, 1393, 972, 421, 130, 31, 6, 1, 0, 9976, 6961, 3015, 931, 222, 43, 7, 1, 0, 81201, 56660, 24541, 7578, 1807, 350, 57, 8, 1, 0, 740785, 516901, 223884, 69133, 16485, 3193, 520, 73, 9, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 12 2014

Keywords

Examples

			T(n, k) as a rectangular matrix (for n >= 0). Only the lower infinite triangle (0 <= k <=n) constitutes the sequence although T(n,k) is defined for all (n,k) in Z^2.
[   0,    1,   -1,   3, -10,  43, -225, 1393, -9976]
[   1,    0,    1,  -2,   7, -30,  157, -972,  6961]
[   1,    1,    0,   1,  -3,  13,  -68,  421, -3015]
[   3,    2,    1,   0,   1,  -4,   21, -130,   931]
[  10,    7,    3,   1,   0,   1,   -5,   31,  -222]
[  43,   30,   13,   4,   1,   0,    1,   -6,    43]
[ 225,  157,   68,  21,   5,   1,    0,    1,    -7]
[1393,  972,  421, 130,  31,   6,    1,    0,     1]
[9976, 6961, 3015, 931, 222,  43,    7,    1,     0]
The diagonals d(n,k) = T(n+k-floor(n/2),k-floor(n/2)) are represented by polynomials described in A246656.
   n\k:    0   1    2     3    4     p_n(x)
-------------------------------------------------------
d(0,k):    0,  0,   0,    0,   0, .. 0                   A000004
d(1,k):    1,  1,   1,    1,   1, .. 1                   A000012
d(2,k):  [0],  1,   2,    3,   4, .. x                   A001477
d(3,k):  [1],  3,   7,   13,  21, .. x^2+x+1             A002061
d(4,k):  [0,  2],  10,   30,  68, .. x^3+x               A034262
d(5,k):  [1,  7],  43,  157, 421, .. x^4+2*x^3+2*x^2+x+1
		

Crossrefs

T(n+0,0) = A001040(n).
T(n+1,1) = A001053(n+1).
T(n+2,2) = A058307(n).
T(n+3,3) = A058308(n).
T(n+4,4) = A058309(n).

Programs

  • Maple
    T := (n, k) -> (BesselK(n,2)*BesselI(k,2) - (-1)^(n+k)*BesselI(n,2) *BesselK(k,2))*2; seq(lprint(seq(round(evalf(T(n,k),99)), k=0..n)), n=0..8);
    # Recurrence
    T := proc(n,k) option remember; local m; m := n-1;
    if  k > m or k < 0 then 0 elif k = m then 1 else T(m-1,k) + m*T(m,k) fi end:
    seq(print(seq(T(n,k), k=0..n)), n=0..8);
  • Mathematica
    T[n_, k_] := T[n, k] = With[{m = n - 1}, If[k > m || k < 0, 0, If[k == m, 1, T[m - 1, k] + m*T[m, k]]]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 03 2019 *)
  • Sage
    def A246654_col(n, k): # k-th column of the triangle
        if n < 2: return n
        return hypergeometric([(1-n)/2, 1-n/2], [1-n, 1+k, 1-n-k], 4) *rising_factorial(k+1,n-1)
    for k in range(6): [round(A246654_col(n,k).n(100)) for n in (0..10)]

Formula

T(n+k,k) = hypergeom([(1-n)/2, 1-n/2], [1-n, 1+k, 1-n-k], 4)* Pochhammer(k+1, n-1).
Recurrence: T(n,k) = T(n-2,k)+(n-1)*T(n-1,k), T(n,n)=0, T(n,n-1)=1.
T(n,k) = T(n,-k) = T(-n,k) = T(-n,-k).
Previous Showing 11-16 of 16 results.