A350112
Triangle read by rows: T(n,k) is the number of tilings of an (n+k)-board using k (1,4)-fences and n-k squares.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 2, 0, 1, 3, 6, 10, 9, 4, 0, 0, 1, 4, 10, 16, 16, 8, 0, 0, 0, 1, 5, 14, 25, 28, 16, 0, 0, 0, 0, 1, 6, 19, 38, 48, 32, 16, 8, 4, 2, 1, 1, 7, 25, 56, 80, 80, 60, 40, 25, 15, 3, 0, 1, 8, 32, 80, 136, 166, 157, 128, 95, 40, 9, 0, 0
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 0;
1, 0, 0, 0;
1, 0, 0, 0, 0;
1, 1, 1, 1, 1, 1;
1, 2, 3, 4, 5, 2, 0;
1, 3, 6, 10, 9, 4, 0, 0;
1, 4, 10, 16, 16, 8, 0, 0, 0;
1, 5, 14, 25, 28, 16, 0, 0, 0, 0;
1, 6, 19, 38, 48, 32, 16, 8, 4, 2, 1;
1, 7, 25, 56, 80, 80, 60, 40, 25, 15, 3, 0;
1, 8, 32, 80, 136, 166, 157, 128, 95, 40, 9, 0, 0;
1, 9, 40, 112, 217, 309, 346, 330, 223, 105, 27, 0, 0, 0;
Other members of the two-parameter family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350111 (m=4,t=2),
A354665 (m=2,t=3),
A354666 (m=2,t=4),
A354667 (m=2,t=5),
A354668 (m=3,t=3).
-
f[n_]:=If[n<0,0,f[n-1]+x*f[n-2]+KroneckerDelta[n,0]];
T[n_, k_]:=Module[{j=Floor[(n+k)/5], r=Mod[n+k,5]},
Coefficient[f[j]^(5-r)*f[j+1]^r,x,k]];
Flatten@Table[T[n,k], {n, 0, 13}, {k, 0, n}]
A354665
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2) + T(n-3,k-1) - T(n-3,k-3) + delta(n,0)*delta(k,0) - delta(n,1)*delta(k,1), T(n
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 1, 2, 0, 1, 2, 4, 0, 1, 1, 3, 6, 3, 3, 0, 1, 4, 9, 8, 9, 0, 1, 1, 5, 13, 17, 18, 6, 4, 0, 1, 6, 18, 30, 36, 20, 16, 0, 1, 1, 7, 24, 48, 66, 55, 40, 10, 5, 0, 1, 8, 31, 72, 114, 120, 100, 40, 25, 0, 1, 1, 9, 39, 103, 186
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 1;
1, 1, 2, 0;
1, 2, 4, 0, 1;
1, 3, 6, 3, 3, 0;
1, 4, 9, 8, 9, 0, 1;
1, 5, 13, 17, 18, 6, 4, 0;
1, 6, 18, 30, 36, 20, 16, 0, 1;
1, 7, 24, 48, 66, 55, 40, 10, 5, 0;
1, 8, 31, 72, 114, 120, 100, 40, 25, 0, 1;
1, 9, 39, 103, 186, 234, 221, 135, 75, 15, 6, 0;
...
Sums over k of T(n-2*k,k) are
A224809.
Other members of the family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350111 (m=4,t=2),
A350112 (m=5,t=2),
A354666 (m=2,t=4),
A354667 (m=2,t=5),
A354668 (m=3,t=3).
A354666
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-2,k-1) + 2*T(n-2,k-2) - T(n-3,k-1) - T(n-3,k-2) + T(n-4,k-1) + T(n-4,k-2) - T(n-4,k-3) - T(n-4,k-4) + delta(n,0)*delta(k,0) - delta(n,2)*(delta(k,1) + delta(k,2)), T(n
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 1, 4, 0, 1, 1, 2, 6, 0, 3, 0, 1, 3, 9, 4, 9, 0, 1, 1, 4, 12, 10, 18, 0, 4, 0, 1, 5, 16, 21, 36, 10, 16, 0, 1, 1, 6, 21, 36, 60, 30, 40, 0, 5, 0, 1, 7, 27, 57, 100, 81, 100, 20, 25, 0, 1, 1, 8, 34, 84, 158, 168
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 1;
1, 0, 2, 0;
1, 1, 4, 0, 1;
1, 2, 6, 0, 3, 0;
1, 3, 9, 4, 9, 0, 1;
1, 4, 12, 10, 18, 0, 4, 0;
1, 5, 16, 21, 36, 10, 16, 0, 1;
1, 6, 21, 36, 60, 30, 40, 0, 5, 0;
1, 7, 27, 57, 100, 81, 100, 20, 25, 0, 1;
1, 8, 34, 84, 158, 168, 200, 70, 75, 0, 6, 0;
1, 9, 42, 118, 243, 322, 400, 231, 225, 35, 36, 0, 1;
...
Sums over k of T(n-3*k,k) are
A224808.
Other members of the family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350111 (m=4,t=2),
A350112 (m=5,t=2),
A354665 (m=2,t=3),
A354667 (m=2,t=5),
A354668 (m=3,t=3).
A354667
Triangle read by rows: T(n,k) is the number of tilings of an (n+4*k) X 1 board using k (1,1;5)-combs and n-k squares.
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 4, 0, 1, 1, 1, 6, 0, 3, 0, 1, 2, 9, 0, 9, 0, 1, 1, 3, 12, 5, 18, 0, 4, 0, 1, 4, 16, 12, 36, 0, 16, 0, 1, 1, 5, 20, 25, 60, 15, 40, 0, 5, 0, 1, 6, 25, 42, 100, 42, 100, 0, 25, 0, 1, 1, 7, 31, 66, 150, 112, 200
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 1;
1, 0, 2, 0;
1, 0, 4, 0, 1;
1, 1, 6, 0, 3, 0;
1, 2, 9, 0, 9, 0, 1;
1, 3, 12, 5, 18, 0, 4, 0;
1, 4, 16, 12, 36, 0, 16, 0, 1;
1, 5, 20, 25, 60, 15, 40, 0, 5, 0;
1, 6, 25, 42, 100, 42, 100, 0, 25, 0, 1;
1, 7, 31, 66, 150, 112, 200, 35, 75, 0, 6, 0;
...
Sums over k of T(n-4*k,k) are
A224811.
Other members of the family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350111 (m=4,t=2),
A350112 (m=5,t=2),
A354665 (m=2,t=3),
A354666 (m=2,t=4),
A354668 (m=3,t=3).
A354668
Triangle read by rows: T(n,k) is the number of tilings of an (n+2*k) X 1 board using k (1,2;3)-combs and n-k squares.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 4, 0, 0, 1, 2, 5, 8, 0, 0, 1, 1, 3, 8, 12, 0, 3, 3, 0, 1, 4, 12, 18, 9, 12, 9, 0, 0, 1, 5, 16, 27, 25, 29, 27, 0, 0, 1, 1, 6, 21, 42, 51, 66, 54, 0, 6, 4, 0, 1, 7, 27, 62, 95, 135, 108, 36
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 0;
1, 0, 0, 1;
1, 0, 1, 2, 0;
1, 1, 3, 4, 0, 0;
1, 2, 5, 8, 0, 0, 1;
1, 3, 8, 12, 0, 3, 3, 0;
1, 4, 12, 18, 9, 12, 9, 0, 0;
1, 5, 16, 27, 25, 29, 27, 0, 0, 1;
1, 6, 21, 42, 51, 66, 54, 0, 6, 4, 0;
1, 7, 27, 62, 95, 135, 108, 36, 30, 16, 0, 0;
...
Sums over k of T(n-2*k,k) are
A224810.
Other members of the family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350111 (m=4,t=2),
A350112 (m=5,t=2),
A354665 (m=2,t=3),
A354666 (m=2,t=4),
A354667 (m=2,t=5).
-
f[n_]:=If[n<0, 0, f[n-1]+x*f[n-3]+KroneckerDelta[n,0]]; T[n_, k_]:=Module[{j=Floor[(n+2*k)/3], r=Mod[n+2*k,3]}, Coefficient[f[j]^(3-r)*f[j+1]^r, x, k]]; Flatten@Table[T[n,k], {n, 0, 11}, {k, 0, n}]
A080242
Table of coefficients of polynomials P(n,x) defined by the relation P(n,x) = (1+x)*P(n-1,x) + (-x)^(n+1).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 1, 3, 4, 2, 1, 1, 4, 7, 6, 3, 1, 5, 11, 13, 9, 3, 1, 1, 6, 16, 24, 22, 12, 4, 1, 7, 22, 40, 46, 34, 16, 4, 1, 1, 8, 29, 62, 86, 80, 50, 20, 5, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, 1, 10, 46, 128, 239, 314, 296, 200, 95
Offset: 0
Rows are {1}, {1,1,1}, {1,2,2}, {1,3,4,2,1}, {1,4,7,6,3}, ... This is the same as table A035317 with an extra 1 at the end of every second row.
Triangle begins
1;
1, 1, 1;
1, 2, 2;
1, 3, 4, 2, 1;
1, 4, 7, 6, 3;
1, 5, 11, 13, 9, 3, 1;
1, 6, 16, 24, 22, 12, 4;
1, 7, 22, 40, 46, 34, 16, 4, 1;
1, 8, 29, 62, 86, 80, 50, 20, 5;
-
Table[CoefficientList[Series[((1+x)^(n+2) -(-1)^n*x^(n+2))/(1+2*x), {x, 0, n+2}], x], {n, 0, 10}]//Flatten (* G. C. Greubel, Feb 18 2019 *)
A243201
Odd octagonal numbers indexed by triangular numbers.
Original entry on oeis.org
1, 21, 133, 481, 1281, 2821, 5461, 9633, 15841, 24661, 36741, 52801, 73633, 100101, 133141, 173761, 223041, 282133, 352261, 434721, 530881, 642181, 770133, 916321, 1082401, 1270101, 1481221, 1717633, 1981281, 2274181, 2598421, 2956161, 3349633, 3781141, 4253061, 4767841, 5328001
Offset: 0
a(2) = 133 because the second triangular number is 3 and third odd octagonal number is 133.
a(3) = 481 because the third triangular number is 6 and the sixth odd octagonal number is 481.
a(4) = 1281 because the fourth triangular number is 10 and the tenth odd octagonal number is 1281.
Row 5 of
A059259 (coefficients of 1 + 4*n + 7*n^2 + 6*n^3 + 3*n^4 + 0*n^5 which is a formula for the within sequence).
Diagonal T(n + 1, n) of
A219069, n > 0.
-
[3*n^4+6*n^3+7*n^2+4*n+1: n in [0..40]]; // Bruno Berselli, Jun 03 2014
-
Table[((3 n^2 + 3 n + 2)^2 - 1)/3, {n, 0, 39}] (* Alonso del Arte, Jun 01 2014 *)
-
[3*n^4+6*n^3+7*n^2+4*n+1 for n in (0..40)] # Bruno Berselli, Jun 03 2014
A349841
Triangle T(n,k) built by placing all ones on the left edge, [1,0,0,0,0] repeated on the right edge, and filling the body using the Pascal recurrence T(n,k) = T(n-1,k) + T(n-1,k-1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 1, 1, 5, 10, 10, 5, 2, 0, 1, 6, 15, 20, 15, 7, 2, 0, 1, 7, 21, 35, 35, 22, 9, 2, 0, 1, 8, 28, 56, 70, 57, 31, 11, 2, 0, 1, 9, 36, 84, 126, 127, 88, 42, 13, 2, 1
Offset: 0
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 2, 1, 0;
1, 3, 3, 1, 0;
1, 4, 6, 4, 1, 1;
1, 5, 10, 10, 5, 2, 0;
1, 6, 15, 20, 15, 7, 2, 0;
1, 7, 21, 35, 35, 22, 9, 2, 0;
1, 8, 28, 56, 70, 57, 31, 11, 2, 0;
1, 9, 36, 84, 126, 127, 88, 42, 13, 2, 1;
-
Flatten[Table[CoefficientList[Series[(1 - x*y)/((1 - (x*y)^5)(1 - x - x*y)), {x, 0, 20}, {y, 0, 10}], {x, y}][[n+1,k+1]],{n,0,10},{k,0,n}]]
A118923
Triangle T(n,k) built by placing T(n,0)=A000012(n) in the left edge, T(n,n)=A079978(n) on the right edge and filling the body with the Pascal recurrence T(n,k) = T(n-1,k) + T(n-1,k-1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 1, 3, 3, 2, 0, 1, 4, 6, 5, 2, 0, 1, 5, 10, 11, 7, 2, 1, 1, 6, 15, 21, 18, 9, 3, 0, 1, 7, 21, 36, 39, 27, 12, 3, 0, 1, 8, 28, 57, 75, 66, 39, 15, 3, 1, 1, 9, 36, 85, 132, 141, 105, 54, 18, 4, 0, 1, 10, 45, 121, 217, 273, 246, 159, 72, 22, 4, 0, 1, 11, 55, 166
Offset: 0
The table begins
1
1 0
1 1 0
1 2 1 1
1 3 3 2 0
1 4 6 5 2 0
1 5 10 11 7 2 1
1 6 15 21 18 9 3 0
-
A000012 := proc(n) 1 ; end: A079978 := proc(n) if n mod 3 = 0 then 1; else 0 ; fi ; end: A118923 := proc(n,k) if k = 0 then A000012(n); elif k = n then A079978(n) ; else A118923(n-1,k)+A118923(n-1,k-1) ; fi ; end: for n from 0 to 15 do for k from 0 to n do printf("%d, ",A118923(n,k)) ; od: od: # R. J. Mathar, Jan 21 2008
-
Flatten@Table[CoefficientList[Series[1/((1 + x*y + x^2*y^2)(1 - x - x*y)), {x, 0, 23}, {y, 0, 11}], {x, y}][[n + 1, k + 1]], {n, 0, 11}, {k, 0, n}] (* Michael A. Allen, Nov 30 2021 *)
A220074
Triangle read by rows giving coefficients T(n,k) of [x^(n-k)] in Sum_{i=0..n} (x-1)^i, 0 <= n <= k.
Original entry on oeis.org
1, 1, 0, 1, -1, 1, 1, -2, 2, 0, 1, -3, 4, -2, 1, 1, -4, 7, -6, 3, 0, 1, -5, 11, -13, 9, -3, 1, 1, -6, 16, -24, 22, -12, 4, 0, 1, -7, 22, -40, 46, -34, 16, -4, 1, 1, -8, 29, -62, 86, -80, 50, -20, 5, 0, 1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1
Offset: 0
Triangle begins:
1;
1, 0;
1, -1, 1;
1, -2, 2, 0;
1, -3, 4, -2, 1;
1, -4, 7, -6, 3, 0;
1, -5, 11, -13, 9, -3, 1;
1, -6, 16, -24, 22, -12, 4, 0;
1, -7, 22, -40, 46, -34, 16, -4, 1;
1, -8, 29, -62, 86, -80, 50, -20, 5, 0;
1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1;
1, -10, 46, -128, 239, -314, 296, -200, 95, -30, 6, 0;
...
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Dmitry Efimov, Hafnian of two-parameter matrices, arXiv:2101.09722 [math.CO], 2021.
- Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
- Ângela Mestre, José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- OEIS Wiki, Autosequence
-
Flat(List([0..12], n-> List([0..n], k-> Sum([0..k], j-> (-1)^j*Binomial(n-k+j, j))))); # G. C. Greubel, Feb 18 2019
-
[[(&+[(-1)^j*Binomial(n-k+j, j): j in [0..k]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 18 2019
-
A059259A := proc(n,k)
1/(1+y)/(1-x-y) ;
coeftayl(%,x=0,n) ;
coeftayl(%,y=0,k) ;
end proc:
A059259 := proc(n,k)
A059259A(n-k,k) ;
end proc:
A220074 := proc(i,j)
(-1)^j*A059259(i,j) ;
end proc: # R. J. Mathar, May 14 2014
-
Table[Sum[(-1)^i*Binomial[n-k+i,i], {i, 0, k}], {n, 0, 12}, {k, 0, n} ]//Flatten (* Michael De Vlieger, Jan 27 2016 *)
-
{T(n,k) = sum(j=0,k, (-1)^j*binomial(n-k+j,j))};
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 18 2019
-
[[sum((-1)^j*binomial(n-k+j,j) for j in (0..k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 18 2019
Definition and comments clarified by
Li-yao Xia, May 15 2014
Previous
Showing 11-20 of 24 results.
Next
Comments