A250304
Four-column array read by rows: T(n,k) = the coefficient of x^k in the expanded polynomial x^3 + (x+1)^3 + ... + (x+n-1)^3, for 0 <= k <= 3.
Original entry on oeis.org
0, 0, 0, 1, 1, 3, 3, 2, 9, 15, 9, 3, 36, 42, 18, 4, 100, 90, 30, 5, 225, 165, 45, 6, 441, 273, 63, 7, 784, 420, 84, 8, 1296, 612, 108, 9, 2025, 855, 135, 10, 3025, 1155, 165, 11, 4356, 1518, 198, 12, 6084, 1950, 234, 13, 8281, 2457, 273, 14, 11025, 3045, 315, 15, 14400, 3720, 360, 16
Offset: 1
Array starts:
n = 1: 0, 0, 0, 1;
n = 2: 1, 3, 3, 2;
n = 3: 9, 15, 9, 3;
n = 4: 36, 42, 18, 4;
n = 5: 100, 90, 30, 5;
n = 6: 225, 165, 45, 6;
n = 7: 441, 273, 63, 7;
n = 8: 784, 420, 84, 8;
...
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,5,0,0,0,-10,0,0,0,10,0,0,0,-5,0,0,0,1).
-
for(n=1,50,for(k=0,3,print1(polcoeff(sum(i=1,n,(x+i-1)^3),k),", ")))
-
concat([0,0,0], Vec(x^4*(x^12-3*x^11+3*x^10-x^9-3*x^8+6*x^7-4*x^5+3*x^4-3*x^3-3*x^2-x-1) / ((x-1)^5*(x+1)^5*(x^2+1)^5) + O(x^100))) \\ Colin Barker, Jun 02 2015
A270861
Irregular triangle read by rows: numerators of the coefficients of polynomials J(2n-1,z) = Sum_(k=1,2, .. n) ((n+1)^2 - k + (n+1-k)*z^n)*z^(k-1)/k.
Original entry on oeis.org
3, 1, 8, 7, 2, 1, 15, 7, 13, 3, 1, 1, 24, 23, 22, 21, 4, 3, 2, 1, 35, 17, 11, 8, 31, 5, 2, 1, 1, 1, 48, 47, 46, 45, 44, 43, 6, 5, 4, 3, 2, 1, 63, 31, 61, 15, 59, 29, 57, 7, 3, 5, 1, 3, 1, 1, 80, 79, 26, 77, 76, 25, 74, 73, 8, 7, 2, 5, 4, 1, 2, 1
Offset: 1
Irregular triangle:
3, 1,
8, 7, 2, 1,
15, 7, 13, 3, 1, 1,
24, 23, 22, 21, 4, 3, 2, 1,
35, 17, 11, 8, 31, 5, 2, 1, 1, 1
48, 47, 46, 45, 44, 43, 6, 5, 4, 3, 2, 1
etc.
Second half part by row: A112543.
-
row[n_] := CoefficientList[Sum[(((n + 1)^2 - k + (n + 1 - k)*z^n))*z^(k - 1)/k, {k, n}], z]; Table[row[n] // Numerator, {n, 1, 9}] // Flatten (* Jean-François Alcover, Apr 07 2016 *)
A290168
If n is even then a(n) = n^2*(n+2)/8, otherwise a(n) = (n-1)*n*(n+1)/8.
Original entry on oeis.org
0, 0, 2, 3, 12, 15, 36, 42, 80, 90, 150, 165, 252, 273, 392, 420, 576, 612, 810, 855, 1100, 1155, 1452, 1518, 1872, 1950, 2366, 2457, 2940, 3045, 3600, 3720, 4352, 4488, 5202, 5355, 6156, 6327, 7220, 7410, 8400
Offset: 0
Cf.
A000027,
A000034,
A000217,
A000384,
A001105,
A005476,
A008805,
A011379,
A022998,
A026741,
A049450,
A059270,
A129194,
A135713,
A161680,
A249264.
-
a[n_] := If[EvenQ[n], n^2*(n + 2)/8, (n - 1)*n*(n + 1)/8]; Table[a[n], {n, 0, 40}]
-
a(n) = if(n%2==0, n^2*(n+2)/8, (n-1)*n*(n+1)/8) \\ Felix Fröhlich, Jul 23 2017
A347823
Triangle read by rows: T(n,k) = (n+k+1)*binomial(n,k), 0 <= k <= n.
Original entry on oeis.org
1, 2, 3, 3, 8, 5, 4, 15, 18, 7, 5, 24, 42, 32, 9, 6, 35, 80, 90, 50, 11, 7, 48, 135, 200, 165, 72, 13, 8, 63, 210, 385, 420, 273, 98, 15, 9, 80, 308, 672, 910, 784, 420, 128, 17, 10, 99, 432, 1092, 1764, 1890, 1344, 612, 162, 19, 11, 120, 585, 1680, 3150, 4032, 3570, 2160, 855, 200, 21
Offset: 0
Triangle begins:
1;
2, 3;
3, 8, 5;
4, 15, 18, 7;
5, 24, 42, 32, 9;
6, 35, 80, 90, 50, 11;
7, 48, 135, 200, 165, 72, 13;
8, 63, 210, 385, 420, 273, 98, 15;
...
A360665
Square array T(n, k) = k*((2*n-1)*k+1)/2 read by rising antidiagonals.
Original entry on oeis.org
0, 0, 0, 0, 1, -1, 0, 2, 3, -3, 0, 3, 7, 6, -6, 0, 4, 11, 15, 10, -10, 0, 5, 15, 24, 26, 15, -15, 0, 6, 19, 33, 42, 40, 21, -21, 0, 7, 23, 42, 58, 65, 57, 28, -28, 0, 8, 27, 51, 74, 90, 93, 77, 36, -36, 0, 9, 31, 60, 90, 115, 129, 126, 100, 45, -45
Offset: 0
By rows:
0, 0, -1, -3, -6, -10, -15, -21, -28, ... = -A161680
0, 1, 3, 6, 10, 15, 21, 28, 36, ... = A000217
0, 2, 7, 15, 26, 40, 57, 77, 100, ... = A005449
0, 3, 11, 24, 42, 65, 93, 126, 164, ... = A005475
0, 4, 15, 33, 58, 90, 129, 175, 228, ... = A022265
0, 5, 19, 42, 74, 115, 165, 224, 292, ... = A022267
0, 6, 23, 51, 90, 140, 201, 273, 356, ... = A022269
... .
Cf. Antidiagonal sums:
A034827(n+1).
-
T[n_, k_] := ((2*n - 1)*k^2 + k)/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 31 2023 *)
-
T(n, k) = ((2*n-1)*k^2+k)/2 \\ Thomas Scheuerle, Mar 17 2023
Comments