cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A250304 Four-column array read by rows: T(n,k) = the coefficient of x^k in the expanded polynomial x^3 + (x+1)^3 + ... + (x+n-1)^3, for 0 <= k <= 3.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 3, 2, 9, 15, 9, 3, 36, 42, 18, 4, 100, 90, 30, 5, 225, 165, 45, 6, 441, 273, 63, 7, 784, 420, 84, 8, 1296, 612, 108, 9, 2025, 855, 135, 10, 3025, 1155, 165, 11, 4356, 1518, 198, 12, 6084, 1950, 234, 13, 8281, 2457, 273, 14, 11025, 3045, 315, 15, 14400, 3720, 360, 16
Offset: 1

Views

Author

Derek Orr, Jan 15 2015

Keywords

Comments

A240970 solves the Diophantine equation: k^3 + (k+1)^3 + ... + (k+n-1)^3 = y^3. This array gives the coefficients of the left hand side for specified n.

Examples

			Array starts:
n = 1:   0,   0,  0, 1;
n = 2:   1,   3,  3, 2;
n = 3:   9,  15,  9, 3;
n = 4:  36,  42, 18, 4;
n = 5: 100,  90, 30, 5;
n = 6: 225, 165, 45, 6;
n = 7: 441, 273, 63, 7;
n = 8: 784, 420, 84, 8;
...
		

Crossrefs

Programs

  • PARI
    for(n=1,50,for(k=0,3,print1(polcoeff(sum(i=1,n,(x+i-1)^3),k),", ")))
    
  • PARI
    concat([0,0,0], Vec(x^4*(x^12-3*x^11+3*x^10-x^9-3*x^8+6*x^7-4*x^5+3*x^4-3*x^3-3*x^2-x-1) / ((x-1)^5*(x+1)^5*(x^2+1)^5) + O(x^100))) \\ Colin Barker, Jun 02 2015

Formula

a(4*k+1) = A000537(k), for k >= 0.
a(4*k+2) = A059270(k), for k >= 0.
a(4*k+3) = A045943(k), for k >= 0.
a(4*k) = k, for k >= 1.
a(n) = ((2*n^4+40*n^3+188*n^2-24*n-558-(2*n^4-24*n^3+188*n^2-792*n-558)*(-1)^n+(2*n^4-20*n^3-130*n^2+772*n+377)*(-1)^((2*n-1+(-1)^n)/4)-(2*n^4+40*n^3-196*n^2-280*n+594)*(-1)^((6*n-1+(-1)^n)/4)-(4*n^3+66*n^2-228*n-217)*(-1)^((10*n-1+(-1)^n)/4)))/8192. - Luce ETIENNE, May 22 2015
G.f.: x^4*(x^12-3*x^11+3*x^10-x^9-3*x^8+6*x^7-4*x^5+3*x^4-3*x^3-3*x^2-x-1) / ((x-1)^5*(x+1)^5*(x^2+1)^5). - Colin Barker, Jun 02 2015

A270861 Irregular triangle read by rows: numerators of the coefficients of polynomials J(2n-1,z) = Sum_(k=1,2, .. n) ((n+1)^2 - k + (n+1-k)*z^n)*z^(k-1)/k.

Original entry on oeis.org

3, 1, 8, 7, 2, 1, 15, 7, 13, 3, 1, 1, 24, 23, 22, 21, 4, 3, 2, 1, 35, 17, 11, 8, 31, 5, 2, 1, 1, 1, 48, 47, 46, 45, 44, 43, 6, 5, 4, 3, 2, 1, 63, 31, 61, 15, 59, 29, 57, 7, 3, 5, 1, 3, 1, 1, 80, 79, 26, 77, 76, 25, 74, 73, 8, 7, 2, 5, 4, 1, 2, 1
Offset: 1

Views

Author

Paul Curtz, Mar 24 2016

Keywords

Comments

Irregular triangle of fractions:
3, 1,
8, 7/2, 2, 1/2,
15, 7, 13/3, 3, 1, 1/3,
24, 23/2, 22/3, 21/4, 4, 3/2, 2/3, 1/4,
35, 17, 11, 8, 31/5, 5, 2, 1, 1/2, 1/5,
48, 47/2, 46/3, 45/4, 44/5, 43/6, 6, 5/2, 4/3, 3/4, 2/5, 1/6.
etc.
First column: A005563; T(n, 1) = A005563(n).
Main diagonal: T(n, n) - n = n^2+1 = A002522(n).
The first upper diagonal is T(n, n+1) = n.
Consider TT(n, k) = k*T(n, k) for k = 1 to n:
3,
8, 7,
15, 14, 13,
24, 23, 22, 21,
etc.
Row sums: 3, 8+7, ... , are the positive terms of A059270; that is A059270(n).

Examples

			Irregular triangle:
3,   1,
8,   7,  2,  1,
15,  7, 13,  3,  1,  1,
24, 23, 22, 21,  4,  3, 2, 1,
35, 17, 11,  8, 31,  5, 2, 1, 1, 1
48, 47, 46, 45, 44, 43, 6, 5, 4, 3, 2, 1
etc.
Second half part by row: A112543.
		

Crossrefs

Programs

  • Mathematica
    row[n_] := CoefficientList[Sum[(((n + 1)^2 - k + (n + 1 - k)*z^n))*z^(k - 1)/k, {k, n}], z]; Table[row[n] // Numerator, {n, 1, 9}] // Flatten (* Jean-François Alcover, Apr 07 2016 *)

A290168 If n is even then a(n) = n^2*(n+2)/8, otherwise a(n) = (n-1)*n*(n+1)/8.

Original entry on oeis.org

0, 0, 2, 3, 12, 15, 36, 42, 80, 90, 150, 165, 252, 273, 392, 420, 576, 612, 810, 855, 1100, 1155, 1452, 1518, 1872, 1950, 2366, 2457, 2940, 3045, 3600, 3720, 4352, 4488, 5202, 5355, 6156, 6327, 7220, 7410, 8400
Offset: 0

Views

Author

Keywords

Comments

Bisection of a(n) [0, 2, 12, 36, 80, 150, 252, ...] is A011379.
Bisection [0, 3, 15, 42, 90, 165, 273, ...] is A059270.
Considering s(n) = [0, 0, 0, 0, 1, 1, 3, 3, 6, 6, 10, 10, 15, 15, ...] (triangular numbers repeated - see A008805), a(n) = n*s(n+2) holds.
Considering the first differences of a(n), b(n) = [0, 2, 1 , 9, 3, 21, 6, 38, 10, 60, 15, 87, ...], b(n) shows bisections A000217 and A005476. In addition, b(n) begins like A249264 up to 12th term, and is an alternation of 4 multiples of 3 and 2 not multiples; b(n) is also such that b(2n) + b(2n+1) = A049450(n).
Considering the second differences c(n), c(n) shows bisections A001105(n+1) and -A000384(n+1), c(n) has 3 consecutive terms multiples of 3 alternating with 3 not multiples; in addition, c(2n) + c(2n+1) = A000027(n).
Considering a(n)/c(n) = [0, 0, 1/4, -1/2, 2/3, -1, 9/8, -3/2, 8/5, -2, 25/12, -5/2, ...], it appears that it is A129194(n)/A022998(n+1) and -A026741(n)/A000034(n) alternating.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[EvenQ[n], n^2*(n + 2)/8, (n - 1)*n*(n + 1)/8]; Table[a[n], {n, 0, 40}]
  • PARI
    a(n) = if(n%2==0, n^2*(n+2)/8, (n-1)*n*(n+1)/8) \\ Felix Fröhlich, Jul 23 2017

Formula

G.f.: x^2*(2 + x + 3*x^2)/((x-1)^4*(x+1)^3).
a(n) = (1/16)*(-1)^n*n*(1 + (-1)^(n+1) + 2*(1 + (-1)^n)*n + 2*(-1)^n*n^2).
Sum_{n>=2} 1/a(n) = 5 + Pi^2/6 - 8*log(2). - Amiram Eldar, Sep 17 2022

A347823 Triangle read by rows: T(n,k) = (n+k+1)*binomial(n,k), 0 <= k <= n.

Original entry on oeis.org

1, 2, 3, 3, 8, 5, 4, 15, 18, 7, 5, 24, 42, 32, 9, 6, 35, 80, 90, 50, 11, 7, 48, 135, 200, 165, 72, 13, 8, 63, 210, 385, 420, 273, 98, 15, 9, 80, 308, 672, 910, 784, 420, 128, 17, 10, 99, 432, 1092, 1764, 1890, 1344, 612, 162, 19, 11, 120, 585, 1680, 3150, 4032, 3570, 2160, 855, 200, 21
Offset: 0

Views

Author

Jules Beauchamp, Jan 23 2022

Keywords

Examples

			Triangle begins:
  1;
  2,  3;
  3,  8,   5;
  4, 15,  18,   7;
  5, 24,  42,  32,   9;
  6, 35,  80,  90,  50,  11;
  7, 48, 135, 200, 165,  72, 13;
  8, 63, 210, 385, 420, 273, 98, 15;
  ...
		

Crossrefs

Row sums give A053220.
Columns give A000027, A005563, A212343.
Diagonals give A005408, A001105, A059270, A112742.

Programs

Formula

T(n,k) = A094727(n+1,k)*A007318(n,k).
Row g.f.: (1 + x)^(n-1)*(1 + n + x + 2*n*x). - Stefano Spezia, Jan 23 2022

A360665 Square array T(n, k) = k*((2*n-1)*k+1)/2 read by rising antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, -1, 0, 2, 3, -3, 0, 3, 7, 6, -6, 0, 4, 11, 15, 10, -10, 0, 5, 15, 24, 26, 15, -15, 0, 6, 19, 33, 42, 40, 21, -21, 0, 7, 23, 42, 58, 65, 57, 28, -28, 0, 8, 27, 51, 74, 90, 93, 77, 36, -36, 0, 9, 31, 60, 90, 115, 129, 126, 100, 45, -45
Offset: 0

Views

Author

Paul Curtz, Mar 17 2023

Keywords

Examples

			By rows:
   0,   0,  -1,  -3,  -6,  -10,  -15,  -21,  -28, ...   = -A161680
   0,   1,   3,   6,  10,   15,   21,   28,   36, ...   =  A000217
   0,   2,   7,  15,  26,   40,   57,   77,  100, ...   =  A005449
   0,   3,  11,  24,  42,   65,   93,  126,  164, ...   =  A005475
   0,   4,  15,  33,  58,   90,  129,  175,  228, ...   =  A022265
   0,   5,  19,  42,  74,  115,  165,  224,  292, ...   =  A022267
   0,   6,  23,  51,  90,  140,  201,  273,  356, ...   =  A022269
   ... .
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := ((2*n - 1)*k^2 + k)/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 31 2023 *)
  • PARI
    T(n, k) = ((2*n-1)*k^2+k)/2 \\ Thomas Scheuerle, Mar 17 2023

Formula

T(n,k) = T(n,k-1)+k^2.
T(n,n) = A081436(n-1).
T(n,n+1) = A059270(n).
T(n,n+4) = -3*A179297(n+4).
T(n+3,n) = A162254(n).
T(n+5,n) = 3*A101986(n).
From Stefano Spezia, Mar 31 2023: (Start)
O.g.f.: (x*y - y^2 + 2*x*y^2)/((1 - x)^2*(1 - y)^3).
E.g.f.: exp(x+y)*y*(2*x - y + 2*x*y)/2. (End)
Previous Showing 21-25 of 25 results.