cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A365643 Number of permutations whose reverse-complement shares the same recording tableau in the Robinson-Schensted correspondence.

Original entry on oeis.org

1, 1, 2, 2, 12, 24, 136, 344, 2872, 7108, 80672, 211056, 3032376
Offset: 0

Views

Author

Dang-Son Nguyen, Sep 14 2023

Keywords

Comments

This is an open problem from Martin's "Algebraic Combinatorics" lecture.

Crossrefs

Cf. A059304.

Programs

  • SageMath
    def a(n): return sum(StandardTableaux(T.shape()).cardinality()
                   for T in StandardTableaux(n) if T == T.evacuation())
    print([a(n) for n in range(13)])

A386670 Number of ternary strings of length 2*n that have more 0's than the combined number of 1's and 2's.

Original entry on oeis.org

0, 1, 9, 73, 577, 4521, 35313, 275577, 2150721, 16793929, 131230609, 1026283545, 8032614625, 62921342953, 493262044977, 3869724080313, 30379987189377, 238661880787593, 1876072096450257, 14756076838714713, 116126703647975457, 914363729294862633, 7203083947383222897
Offset: 0

Views

Author

Enrique Navarrete, Jul 28 2025

Keywords

Examples

			a(1)=1 since the string of length 2 is 00.
a(2)=9 since the strings of length 4 are the 4 permutations of 0001, the 4 permutations of 0002, and 0000.
a(4)=577 since the strings of length 8 are (number of permutations in parentheses): 00000001 (8), 00000002 (8), 00000011 (28), 00000012 (56), 00000022 (28), 00000111 (56), 00000112 (168), 00000122 (168), 00000222 (56), 00000000 (1).
		

Crossrefs

Formula

a(n) = Sum_{k=1..n} 2^(n-k)*binomial(2*n,n-k).
a(n) = Sum_{k=1..n} A128417(n,k).
G.f.: (1-4*x-sqrt(1-8*x))/(sqrt(1-8*x)*(sqrt(1-8*x)+12*x-1)).
a(n) = A128418(n) - A059304(n).

A115902 Expansion of (1-8*x)^(-3/2).

Original entry on oeis.org

1, 12, 120, 1120, 10080, 88704, 768768, 6589440, 56010240, 472975360, 3972993024, 33228668928, 276905574400, 2300446310400, 19060840857600, 157569617756160, 1299949346488320, 10705465206374400, 88022713919078400, 722712809019801600, 5926245033962373120
Offset: 0

Views

Author

Paul Barry, Feb 02 2006

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add((binomial(2*n,n))*2^(n-2), j=1..n): seq(a(n), n=1..20); # Zerinvary Lajos, May 03 2007
  • Mathematica
    CoefficientList[Series[(1-8x)^-(3/2),{x,0,30}],x] (* Harvey P. Dale, Jul 13 2012 *)

Formula

G.f.: 1/((1-8*x)*sqrt(1-8*x)) = 1F0(3/2;;8x).
a(n) = Jacobi_P(n,1/2,1/2,1)*8^n.
a(n) = 2^n*(2*n+1)*binomial(2*n,n).
a(n) = (2*n+1)*A059304(n).
a(n) = 2^n*A002457(n).
D-finite with recurrence: n*a(n) -4*(2*n+1)*a(n-1) =0. - R. J. Mathar, Nov 14 2011
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 8*x*(2*k+3)/(8*x*(2*k+3) + 2*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
Sum_{n>=0} (-1)^n/a(n) = 4/3*log(2). - Daniel Suteu, Oct 31 2017
Sum_{n>=0} 1/a(n) = 8*arcsin(1/sqrt(8))/sqrt(7). - Amiram Eldar, Jan 27 2024

A380611 Irregular triangle read by rows: T(r,c) is the product of the number of standard Young tableaux (A117506) and the number of semistandard Young tableaux (A262030) for partitions of r.

Original entry on oeis.org

1, 1, 3, 1, 10, 16, 1, 35, 135, 40, 45, 1, 126, 896, 875, 756, 375, 96, 1, 462, 5250, 10206, 8400, 2450, 14336, 2800, 875, 1701, 175, 1, 1716, 28512, 90552, 74250, 65856, 257250, 48000, 74088, 55566, 102900, 8100, 10976, 5488, 288, 1, 6435, 147147, 686400, 567567, 931392, 3244032, 606375, 194040, 2910600, 1448832, 2673000, 202125, 666792, 846720, 1029000, 491520, 19845, 24696, 65856, 14400, 441, 1
Offset: 0

Views

Author

Wouter Meeussen, Jan 28 2025

Keywords

Comments

Partitions are generated in reverse lexicographic order.
Remark that A262030 uses Abramowitz-Stegun (A-St) order.
Sum of row r equals r^r for r > 0 (Robinson-Schensted correspondence).

Examples

			Triangle begins:
    1;
    1;
    3,    1;
   10,   16,     1;
   35,  135,    40,   45,    1;
  126,  896,   875,  756,  375,    96,    1;
  462, 5250, 10206, 8400, 2450, 14336, 2800, 875, 1701, 175, 1;
  ...
Fourth row is 1*35, 3*45, 2*20, 3*15, 1*1 with sum 256 = 4^4.
		

Crossrefs

Row sums give A000312.
Row lengths give A000041.
Leftmost column gives A088218.

Programs

  • Mathematica
    Needs["Combinatorica`"];
    hooklength[par_?PartitionQ]:=Table[Count[par,q_/;q>=j]+1-i+par[[i]]-j,{i,Length[par]},{j,par[[i]]}];
    countSYT[par_?PartitionQ]:=Tr[par]!/Times@@Flatten[hooklength[par]];
    content[par_?PartitionQ]:=Table[j-i,{i,Length[par]},{j,par[[i]]}];
    countSSYT[par_?PartitionQ,t_Integer_]:=Times@@((t+Flatten[content[par]])/Flatten[hooklength[par]]);
    Table[countSYT[par] countSSYT[par,n],{n,8},{par,IntegerPartitions[n]}]
Previous Showing 31-34 of 34 results.