A128339
Numbers k such that (9^k + 5^k)/14 is prime.
Original entry on oeis.org
3, 5, 13, 17, 43, 127, 229, 277, 6043, 11131, 11821
Offset: 1
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128340,
A128341,
A128342,
A128343. Cf.
A004061,
A082182,
A121877,
A059802. Cf.
A062572,
A128344,
A128345,
A128346,
A128347,
A128348,
A128349,
A128350,
A128351,
A128352,
A128353,
A128354.
-
[n: n in [3..300] |IsPrime((9^n + 5^n) div 14)]; // Vincenzo Librandi, Nov 02 2018
-
k=9; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((9^n+5^n)/14) \\ Charles R Greathouse IV, Feb 17 2017
A128340
Numbers k such that (11^k + 5^k)/16 is prime.
Original entry on oeis.org
7, 11, 181, 421, 2297, 2797, 4129, 4139, 7151, 29033
Offset: 1
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128341,
A128342,
A128343.
Cf.
A062572,
A128344,
A128345,
A128346,
A128347,
A128348,
A128349,
A128350,
A128351,
A128352,
A128353,
A128354.
-
k=11; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((11^n+5^n)/16) \\ Charles R Greathouse IV, Feb 17 2017
A128346
Numbers k such that (9^k - 5^k)/4 is prime.
Original entry on oeis.org
3, 11, 17, 173, 839, 971, 40867, 45821, 147503
Offset: 1
Cf.
A062572,
A128344,
A128345,
A128347,
A128348,
A128349,
A128350,
A128351,
A128352,
A128353,
A128354.
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128340,
A128341,
A128342.
-
k=9; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((9^n-5^n)/4) \\ Charles R Greathouse IV, Feb 17 2017
A128348
Numbers k such that (12^k - 5^k)/7 is prime.
Original entry on oeis.org
2, 3, 31, 41, 53, 101, 421, 1259, 4721, 45259
Offset: 1
Cf.
A062572,
A128344,
A128345,
A128346,
A128347,
A128349,
A128350,
A128351,
A128352,
A128353,
A128354.
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128340,
A128341,
A128342.
-
k=12; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((12^n-5^n)/7) \\ Charles R Greathouse IV, Feb 17 2017
A128337
Numbers k such that (7^k + 5^k)/12 is prime.
Original entry on oeis.org
11, 31, 173, 271, 547, 1823, 2111, 5519, 7793, 22963, 41077, 49739
Offset: 1
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128338,
A128339,
A128340,
A128341,
A128342,
A128343.
Cf.
A062572,
A128344,
A128345,
A128346,
A128347,
A128348,
A128349,
A128350,
A128351,
A128352,
A128353,
A128354.
-
k=7; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((7^n+5^n)/12) \\ Charles R Greathouse IV, Feb 17 2017
A128345
Numbers k such that (8^k - 5^k)/3 is prime.
Original entry on oeis.org
2, 19, 1021, 5077, 34031, 46099, 65707, 347437
Offset: 1
Cf.
A062572,
A128344,
A128346,
A128347,
A128348,
A128349,
A128350,
A128351,
A128352,
A128353,
A128354.
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128340,
A128341,
A128342.
-
k=8; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,200}]
Select[Range[5000],PrimeQ[(8^#-5^#)/3]&] (* Harvey P. Dale, Mar 23 2011 *)
-
is(n)=isprime((8^n-5^n)/3) \\ Charles R Greathouse IV, Feb 17 2017
A128352
Numbers k such that (17^k - 5^k)/12 is prime.
Original entry on oeis.org
5, 7, 17, 23, 43, 71, 239, 733, 1097
Offset: 1
Cf.
A062572,
A128344,
A128345,
A128346,
A128347,
A128348,
A128349,
A128350,
A128351,
A128353,
A128354.
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128340,
A128341,
A128342.
-
k=17; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((17^n-5^n)/12) \\ Charles R Greathouse IV, Feb 17 2017
A128353
Numbers k such that (18^k - 5^k)/13 is prime.
Original entry on oeis.org
2, 3, 19, 23, 31, 37, 251, 283, 977, 28687, 32993
Offset: 1
Cf.
A062572,
A128344,
A128345,
A128346,
A128347,
A128348,
A128349,
A128350,
A128351,
A128352,
A128354.
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128340,
A128341,
A128342.
-
k=18; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((18^n-5^n)/13) \\ Charles R Greathouse IV, Feb 17 2017
A128354
Numbers k such that (19^k - 5^k)/14 is prime.
Original entry on oeis.org
5, 17, 31, 59, 373, 643, 2843, 5209, 85009
Offset: 1
Cf.
A062572,
A128344,
A128345,
A128346,
A128347,
A128348,
A128349,
A128350,
A128351,
A128352,
A128353.
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128340,
A128341,
A128342.
-
k=19; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((19^n-5^n)/14) \\ Charles R Greathouse IV, Feb 17 2017
A128349
Numbers k such that (13^k - 5^k)/8 is prime.
Original entry on oeis.org
5, 19, 71, 197, 659, 22079, 61949
Offset: 1
Cf.
A062572,
A128344,
A128345,
A128346,
A128347,
A128348,
A128350,
A128351,
A128352,
A128353,
A128354.
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128340,
A128341,
A128342.
-
k=13; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((13^n-5^n)/8) \\ Charles R Greathouse IV, Feb 17 2017
Comments