A059891
a(n) = |{m : multiplicative order of 9 mod m = n}|.
Original entry on oeis.org
4, 6, 12, 14, 20, 58, 12, 88, 112, 150, 60, 290, 12, 138, 732, 144, 124, 1088, 60, 670, 740, 570, 28, 13864, 360, 138, 3968, 1362, 252, 22058, 124, 320, 1972, 1146, 732, 10704, 124, 570, 12260, 15176, 124, 60470, 28, 11634, 195728, 282, 508, 116592, 2032
Offset: 1
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(9^d-1), d=divisors(n)):
seq(a(n), n=1..40); # Alois P. Heinz, Oct 12 2012
-
a[n_] := Sum[MoebiusMu[n/d]*DivisorSigma[0, 9^d-1], {d, Divisors[n]}];
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jan 13 2025, after Alois P. Heinz *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(9^d-1)); \\ Amiram Eldar, Jan 25 2025
A212906
Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(3) listed in ascending order.
Original entry on oeis.org
1, 2, 4, 8, 13, 26, 5, 10, 16, 20, 40, 80, 11, 22, 121, 242, 7, 14, 28, 52, 56, 91, 104, 182, 364, 728, 1093, 2186, 32, 41, 82, 160, 164, 205, 328, 410, 656, 820, 1312, 1640, 3280, 6560, 757, 1514, 9841, 19682, 44, 61, 88, 122, 244, 484, 488, 671, 968, 1342
Offset: 1
Triangle T(n,k) begins:
1, 2;
4, 8;
13, 26;
5, 10, 16, 20, 40, 80;
11, 22, 121, 242;
7, 14, 28, 52, 56, 91, 104, 182, 364, 728;
- R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 555-557.
- V. I. Arnol'd, Topology and statistics of formulas of arithmetics, Uspekhi Mat. Nauk, 58:4(352) (2003), 3-28
-
with(numtheory):
M:= proc(n) option remember;
divisors(3^n-1) minus U(n-1)
end:
U:= proc(n) option remember;
`if`(n=0, {}, M(n) union U(n-1))
end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..15); # Alois P. Heinz, Jun 02 2012
-
M[n_] := M[n] = Divisors[3^n - 1] ~Complement~ U[n - 1];
U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
T[n_] := Sort[M[n]]; Array[T, 15] // Flatten (* Jean-François Alcover, Jun 10 2018, after Alois P. Heinz *)
A212485
Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(5) listed in ascending order.
Original entry on oeis.org
1, 2, 4, 3, 6, 8, 12, 24, 31, 62, 124, 13, 16, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624, 11, 22, 44, 71, 142, 284, 781, 1562, 3124, 7, 9, 14, 18, 21, 28, 36, 42, 56, 63, 72, 84, 93, 126, 168, 186, 217, 248, 252, 279, 372, 434, 504, 558, 651, 744, 868, 1116
Offset: 1
Triangle T(n,k) begins:
1, 2, 4;
3, 6, 8, 12, 24;
31, 62, 124;
13, 16, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624;
11, 22, 44, 71, 142, 284, 781, 1562, 3124;
...
- R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 557-560.
-
with(numtheory):
M:= proc(n) option remember;
`if`(n=1, {1, 2, 4}, divisors(5^n-1) minus U(n-1))
end:
U:= proc(n) option remember;
`if`(n=0, {}, M(n) union U(n-1))
end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..8);
-
M[n_] := M[n] = If[n == 1, {1, 2, 4}, Divisors[5^n-1] ~Complement~ U[n-1]];
U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
T[n_] := Sort[M[n]]; Array[T, 8] // Flatten (* Jean-François Alcover, Jun 10 2018, from Maple *)
A212486
Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(7) listed in ascending order.
Original entry on oeis.org
1, 2, 3, 6, 4, 8, 12, 16, 24, 48, 9, 18, 19, 38, 57, 114, 171, 342, 5, 10, 15, 20, 25, 30, 32, 40, 50, 60, 75, 80, 96, 100, 120, 150, 160, 200, 240, 300, 400, 480, 600, 800, 1200, 2400, 2801, 5602, 8403, 16806, 36, 43, 72, 76, 86, 129, 144, 152, 172, 228, 258
Offset: 1
Triangle T(n,k) begins:
1, 2, 3, 6;
4, 8, 12, 16, 24, 48;
9, 18, 19, 38, 57, 114, 171, 342;
5, 10, 15, 20, 25, 30, 32, 40, 50, 60, 75, 80, 96, 100, 120, 150, 160, 200, 240, 300, 400, 480, 600, 800, 1200, 2400;
...
- R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 560-562.
- V. I. Arnol'd, Topology and statistics of formulas of arithmetics, Uspekhi Mat. Nauk, 58:4(352) (2003), 3-28
-
with(numtheory):
M:= proc(n) option remember;
`if`(n=1, {1, 2, 3, 6}, divisors(7^n-1) minus U(n-1))
end:
U:= proc(n) option remember;
`if`(n=0, {}, M(n) union U(n-1))
end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..7);
-
M[n_] := M[n] = If[n == 1, {1, 2, 3, 6}, Divisors[7^n - 1] ~Complement~ U[n - 1]];
U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
T[n_] := Sort[M[n]];
Table[T[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Sep 24 2022, from Maple code *)
Comments