cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A059891 a(n) = |{m : multiplicative order of 9 mod m = n}|.

Original entry on oeis.org

4, 6, 12, 14, 20, 58, 12, 88, 112, 150, 60, 290, 12, 138, 732, 144, 124, 1088, 60, 670, 740, 570, 28, 13864, 360, 138, 3968, 1362, 252, 22058, 124, 320, 1972, 1146, 732, 10704, 124, 570, 12260, 15176, 124, 60470, 28, 11634, 195728, 282, 508, 116592, 2032
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m).
a(n) = number of orders of degree-n monic irreducible polynomials over GF(9).
Also, number of primitive factors of 9^n - 1. - Max Alekseyev, May 03 2022

Crossrefs

Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), A059886 (b=4), A059887 (b=5), A059888 (b=6), A059889 (b=7), A059890 (b=8), this sequence (b=9), A059892 (b=10).
Column k=9 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(9^d-1), d=divisors(n)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    a[n_] := Sum[MoebiusMu[n/d]*DivisorSigma[0, 9^d-1], {d, Divisors[n]}];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jan 13 2025, after Alois P. Heinz *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(9^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{d|n} mu(n/d)*tau(9^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A212906 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(3) listed in ascending order.

Original entry on oeis.org

1, 2, 4, 8, 13, 26, 5, 10, 16, 20, 40, 80, 11, 22, 121, 242, 7, 14, 28, 52, 56, 91, 104, 182, 364, 728, 1093, 2186, 32, 41, 82, 160, 164, 205, 328, 410, 656, 820, 1312, 1640, 3280, 6560, 757, 1514, 9841, 19682, 44, 61, 88, 122, 244, 484, 488, 671, 968, 1342
Offset: 1

Views

Author

Boris Putievskiy, May 29 2012

Keywords

Comments

The elements m of row n, are also solutions to the equation: multiplicative order of 3 mod m = n, with gcd(m,3) = 1, cf. A053446.

Examples

			Triangle T(n,k) begins:
1,   2;
4,   8;
13, 26;
5,  10,  16,  20, 40, 80;
11, 22, 121, 242;
7,  14,  28,  52, 56, 91, 104, 182, 364, 728;
		

References

  • R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 555-557.
  • V. I. Arnol'd, Topology and statistics of formulas of arithmetics, Uspekhi Mat. Nauk, 58:4(352) (2003), 3-28

Crossrefs

Column k=2 of A212737.
Column k=1 gives: A218356.

Programs

  • Maple
    with(numtheory):
    M:= proc(n) option remember;
          divisors(3^n-1) minus U(n-1)
        end:
    U:= proc(n) option remember;
          `if`(n=0, {}, M(n) union U(n-1))
        end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..15);  # Alois P. Heinz, Jun 02 2012
  • Mathematica
    M[n_] := M[n] = Divisors[3^n - 1] ~Complement~ U[n - 1];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
    T[n_] := Sort[M[n]]; Array[T, 15] // Flatten (* Jean-François Alcover, Jun 10 2018, after Alois P. Heinz *)

Formula

T(n,k) = k-th smallest element of M(n) with M(n) = {d : d | (3^n-1)} \ (M(1) U M(2) U ... U M(i-1)) for n>1, M(1) = {1,2}.
|M(n)| = Sum_{d|n} mu(n/d)*tau(3^d-1) = A059885(n).

A212485 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(5) listed in ascending order.

Original entry on oeis.org

1, 2, 4, 3, 6, 8, 12, 24, 31, 62, 124, 13, 16, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624, 11, 22, 44, 71, 142, 284, 781, 1562, 3124, 7, 9, 14, 18, 21, 28, 36, 42, 56, 63, 72, 84, 93, 126, 168, 186, 217, 248, 252, 279, 372, 434, 504, 558, 651, 744, 868, 1116
Offset: 1

Views

Author

Boris Putievskiy, Jun 02 2012

Keywords

Comments

The elements m of row n, are also solutions to the equation: multiplicative order of 5 mod m = n, with gcd(m,5) = 1, cf. A050977.

Examples

			Triangle T(n,k) begins:
   1,  2,   4;
   3,  6,   8, 12,  24;
  31, 62, 124;
  13, 16,  26, 39,  48,  52,  78,  104,  156, 208, 312, 624;
  11, 22,  44, 71, 142, 284, 781, 1562, 3124;
  ...
		

References

  • R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 557-560.

Crossrefs

Column k=3 of A212737.
Column k=1 gives: A218357.

Programs

  • Maple
    with(numtheory):
    M:= proc(n) option remember;
          `if`(n=1, {1, 2, 4}, divisors(5^n-1) minus U(n-1))
        end:
    U:= proc(n) option remember;
          `if`(n=0, {}, M(n) union U(n-1))
        end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..8);
  • Mathematica
    M[n_] := M[n] = If[n == 1, {1, 2, 4}, Divisors[5^n-1] ~Complement~ U[n-1]];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
    T[n_] := Sort[M[n]]; Array[T, 8] // Flatten (* Jean-François Alcover, Jun 10 2018, from Maple *)

Formula

T(n,k) = k-th smallest element of M(n) with M(n) = {d : d | (5^n-1)} \ (M(1) U M(2) U ... U M(i-1)) for n>1, M(1) = {1,2,4}.
|M(n)| = Sum_{d|n} mu(n/d)*tau(5^d-1) = A059887.

A212486 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(7) listed in ascending order.

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 12, 16, 24, 48, 9, 18, 19, 38, 57, 114, 171, 342, 5, 10, 15, 20, 25, 30, 32, 40, 50, 60, 75, 80, 96, 100, 120, 150, 160, 200, 240, 300, 400, 480, 600, 800, 1200, 2400, 2801, 5602, 8403, 16806, 36, 43, 72, 76, 86, 129, 144, 152, 172, 228, 258
Offset: 1

Views

Author

Boris Putievskiy, Jun 02 2012

Keywords

Comments

The elements m of row n, are also solutions to the equation: multiplicative order of 7 mod m = n, with gcd(m,7) = 1, cf. A053450.

Examples

			Triangle T(n,k) begins:
  1,  2,  3,  6;
  4,  8, 12, 16, 24,  48;
  9, 18, 19, 38, 57, 114, 171, 342;
  5, 10, 15, 20, 25,  30,  32,  40, 50, 60, 75, 80, 96, 100, 120, 150, 160, 200, 240, 300, 400, 480, 600, 800, 1200, 2400;
  ...
		

References

  • R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 560-562.
  • V. I. Arnol'd, Topology and statistics of formulas of arithmetics, Uspekhi Mat. Nauk, 58:4(352) (2003), 3-28

Crossrefs

Column k=4 of A212737.
Column k=1 gives: A218358.

Programs

  • Maple
    with(numtheory):
    M:= proc(n) option remember;
          `if`(n=1, {1, 2, 3, 6}, divisors(7^n-1) minus U(n-1))
        end:
    U:= proc(n) option remember;
          `if`(n=0, {}, M(n) union U(n-1))
        end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..7);
  • Mathematica
    M[n_] := M[n] = If[n == 1, {1, 2, 3, 6}, Divisors[7^n - 1] ~Complement~ U[n - 1]];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
    T[n_] := Sort[M[n]];
    Table[T[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Sep 24 2022, from Maple code *)

Formula

T(n,k) = k-th smallest element of M(n) with M(n) = {d : d | (7^n-1)} \ (M(1) U M(2) U ... U M(i-1)) for n>1, M(1) = {1,2,3,6}.
|M(n)| = Sum_{d|n} mu(n/d)*tau(7^d-1) = A059889(n).
Previous Showing 11-14 of 14 results.