1, 2, 2, 1, 3, 1, 3, 1, 1, 3, 2, 1, 4, 2, 1, 4, 2, 1, 1, 4, 3, 1, 1, 4, 3, 2, 1, 5, 3, 2, 1, 5, 3, 2, 1, 1, 5, 4, 2, 1, 1, 6, 4, 2, 1, 1, 5, 4, 3, 2, 1, 6, 4, 3, 2, 1, 6, 4, 3, 2, 1, 1, 7, 4, 3, 2, 1, 1, 7, 5, 3, 2, 1, 1, 7, 5, 3, 2, 2, 1, 7, 5, 3, 2, 2, 1, 1, 7, 5, 4, 3, 2, 1, 7, 5, 4, 3, 2, 1
Offset: 1
A224653
Irregular table which shows in row n the dimensions of the irreducible representations of the permutation group of order n!.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 1, 4, 5, 6, 1, 5, 9, 10, 16, 1, 6, 14, 15, 20, 21, 35, 1, 7, 14, 20, 21, 28, 35, 42, 56, 64, 70, 90, 1, 8, 27, 28, 42, 48, 56, 70, 84, 105, 120, 162, 168, 189, 216, 1, 9, 35, 36, 42, 75, 84, 90, 126, 160, 210, 225, 252, 288, 300, 315, 350, 448, 450, 525, 567, 768
Offset: 0
The group of permutations of [8] has 2 representations of dimension 1, 2 of dimension 7, 2 of dimension 14, 2 of dimension 20, 2 of dimension 21, 2 of dimension 28, 2 of dimension 35, 1 of dimension 42, 2 of dimension 56, 2 of dimension 64, 2 of dimension of 70 and 1 of dimension 90.
1;
1;
1;
1,2;
1,2,3;
1,4,5,6;
1,5,9,10,16;
1,6,14,15,20,21,35;
1,7,14,20,21,28,35,42,56,64,70,90;
1,8,27,28,42,48,56,70,84,105,120,162,168,189,216;
1,9,35,36,42,75,84,90,126,160,210,225,252,288,300,315,350,448,450,525,567,768;
-
h:= proc(l) local n; n:= nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n]), `if`(i<1, 0,
seq(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
T:= n-> sort([{g(n$2, [])}[]])[]:
seq(T(n), n=0..12); # Alois P. Heinz, May 26 2015
-
h[l_List] := Module[{n}, n = Length[l]; Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_List] := If[n==0 || i==1, h[Join[l, Array[1&, n]]], If[i<1, 0,Table[g[n - i*j, i-1, Join [l, Array[i&, j]]], {j, 0, n/i}]]]; T[n_] := g[n, n, {}] // Flatten // Union; T[1] = {1}; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 03 2015, after Alois P. Heinz *)
A027842
Number of subgroups of index n in fundamental group of a certain fiber space.
Original entry on oeis.org
1, 7, 34, 227, 1296, 10576, 77554, 729379, 7013419, 77371042, 910455096, 11877617828, 165087132666, 2480783846184, 39677415301224, 675818886754115, 12180498014887816, 231893906693650507, 4645789707491981892, 97740610362119850762, 2153888078209948673032
Offset: 1
A093716
Hook products of all partitions of 5.
Original entry on oeis.org
20, 24, 24, 30, 30, 120, 120
Offset: 1
-
H:=proc(pa) local F,j,p,Q,i,col,a,A: F:=proc(x) local i, ct: ct:=0: for i from 1 to nops(x) do if x[i]>1 then ct:=ct+1 else fi od: ct; end: for j from 1 to nops(pa) do p[1][j]:=pa[j] od: Q[1]:=[seq(p[1][j],j=1..nops(pa))]: for i from 2 to pa[1] do for j from 1 to F(Q[i-1]) do p[i][j]:=Q[i-1][j]-1 od: Q[i]:=[seq(p[i][j],j=1..F(Q[i-1]))] od: for i from 1 to pa[1] do col[i]:=[seq(Q[i][j]+nops(Q[i])-j,j=1..nops(Q[i]))] od: a:=proc(i,j) if i<=nops(Q[j]) and j<=pa[1] then Q[j][i]+nops(Q[j])-i else 1 fi end: A:=matrix(nops(pa),pa[1],a): product(product(A[m,n],n=1..pa[1]),m=1..nops(pa)); end: with(combinat): rev:=proc(a) [seq(a[nops(a)+1-i],i=1..nops(a))] end: sort([seq(H(rev(partition(5)[q])), q=1..numbpart(5))]);
-
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i < 1, 0, Flatten@Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
T[n_] := g[n, n, {}];
Sort[5!/T[5]] (* Jean-François Alcover, Aug 12 2024, after Alois P. Heinz in A060240 *)
A093764
Hook products of all partitions of 6.
Original entry on oeis.org
45, 72, 72, 80, 80, 144, 144, 144, 144, 720, 720
Offset: 1
-
H:=proc(pa) local F,j,p,Q,i,col,a,A: F:=proc(x) local i, ct: ct:=0: for i from 1 to nops(x) do if x[i]>1 then ct:=ct+1 else fi od: ct; end: for j from 1 to nops(pa) do p[1][j]:=pa[j] od: Q[1]:=[seq(p[1][j],j=1..nops(pa))]: for i from 2 to pa[1] do for j from 1 to F(Q[i-1]) do p[i][j]:=Q[i-1][j]-1 od: Q[i]:=[seq(p[i][j],j=1..F(Q[i-1]))] od: for i from 1 to pa[1] do col[i]:=[seq(Q[i][j]+nops(Q[i])-j,j=1..nops(Q[i]))] od: a:=proc(i,j) if i<=nops(Q[j]) and j<=pa[1] then Q[j][i]+nops(Q[j])-i else 1 fi end: A:=matrix(nops(pa),pa[1],a): product(product(A[m,n],n=1..pa[1]),m=1..nops(pa)); end: with(combinat): rev:=proc(a) [seq(a[nops(a)+1-i],i=1..nops(a))] end: sort([seq(H(rev(partition(6)[q])),q=1..numbpart(6))]);
-
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i < 1, 0, Flatten@Table[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
T[n_] := g[n, n, {}];
Sort[6!/T[6]] (* Jean-François Alcover, Jul 20 2024, after Alois P. Heinz in A060240 *)
Comments