cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A329523 a(n) = n * (binomial(n + 1, 3) + 1).

Original entry on oeis.org

0, 1, 4, 15, 44, 105, 216, 399, 680, 1089, 1660, 2431, 3444, 4745, 6384, 8415, 10896, 13889, 17460, 21679, 26620, 32361, 38984, 46575, 55224, 65025, 76076, 88479, 102340, 117769, 134880, 153791, 174624, 197505, 222564, 249935, 279756, 312169, 347320, 385359, 426440
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2019

Keywords

Comments

The n-th centered n-gonal pyramidal number.

Examples

			Square array begins:
  (0), 1,  2,   3,   4,    5,  ... A001477
   0, (1), 3,   7,  14,   25,  ... A004006
   0,  1, (4), 11,  24,   45,  ... A006527
   0,  1,  5, (15), 34,   65,  ... A006003 (partial sums of A005448)
   0,  1,  6,  19, (44),  85,  ... A005900 (partial sums of A001844)
   0,  1,  7,  23,  54, (105), ... A004068 (partial sums of A005891)
...
This sequence is the main diagonal of the array.
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), 142.

Crossrefs

Programs

  • Magma
    [ n*(Binomial(n+1,3)+1):n in [0..40]]; // Marius A. Burtea, Nov 15 2019
    
  • Magma
    R:=PowerSeriesRing(Integers(), 41); [0] cat Coefficients(R!(x*(1-x+5*x^2-x^3)/(1-x)^5)); // Marius A. Burtea, Nov 15 2019
  • Mathematica
    Table[n (Binomial[n + 1, 3] + 1), {n, 0, 40}]
    nmax = 40; CoefficientList[Series[x (1 - x + 5 x^2 - x^3)/(1 - x)^5, {x, 0, nmax}], x]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 4, 15, 44}, 41]

Formula

G.f.: x * (1 - x + 5*x^2 - x^3) / (1 - x)^5.
E.g.f.: exp(x) * x * (1 + x + x^2 + x^3 / 6).
a(n) = n * (n + 2) * (n^2 - 2*n + 3) / 6.
a(n) = n * (A000292(n-1) + 1).
a(n) = n + 2 * Sum_{k=1..n} A000330(k-1).
a(n) + a(-n) = 4 * A002415(n).

A366203 a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(3*n,n-k-1) * (n-3)^k.

Original entry on oeis.org

1, 2, 12, 156, 3507, 115692, 5066364, 276943568, 18152243967, 1387267590540, 121106707350928, 11889022355301672, 1296359140925188212, 155440199716271334648, 20327081449263918542412, 2879054747404226046119448, 439060192463001381367975215, 71727764882350305085962745740
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 04 2023

Keywords

Comments

a(n) is the coefficient of x^n in expansion of series reversion of g.f. for n-gonal numbers (with signs).

Crossrefs

Programs

  • Mathematica
    Unprotect[Power]; 0^0 = 1; Table[1/n Sum[Binomial[n + k - 1, k] Binomial[3 n, n - k - 1] (n - 3)^k, {k, 0, n - 1}], {n, 1, 18}]
    Table[Binomial[3 n, n - 1] Hypergeometric2F1[1 - n, n, 2 (n + 1), 3 - n]/n, {n, 1, 18}]
    Table[SeriesCoefficient[InverseSeries[Series[x (1 - (n - 3) x)/(1 + x)^3, {x, 0, n}], x], {x, 0, n}], {n, 1, 18}]

Formula

a(n) = [x^n] Series_Reversion( x * (1 - (n - 3) * x) / (1 + x)^3 ).

A117665 n times the n-th n-gonal number.

Original entry on oeis.org

0, 2, 6, 24, 80, 210, 462, 896, 1584, 2610, 4070, 6072, 8736, 12194, 16590, 22080, 28832, 37026, 46854, 58520, 72240, 88242, 106766, 128064, 152400, 180050, 211302, 246456, 285824, 329730, 378510, 432512, 492096, 557634, 629510, 708120, 793872
Offset: 0

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 11 2006

Keywords

Crossrefs

Cf. A060354.

Programs

Formula

a(n) = n (n + 1) (n^2 - 3 n + 4)/2. - corrected by Eric Rowland, Aug 15 2017
From Chai Wah Wu, Jul 29 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
G.f.: 2*x*(1 - 2*x + 7*x^2)/(1 - x)^5. (End)

A130218 Partial sums of A100119. Sum of first n of the n-th centered n-gonal numbers.

Original entry on oeis.org

1, 3, 10, 29, 70, 146, 273, 470, 759, 1165, 1716, 2443, 3380, 4564, 6035, 7836, 10013, 12615, 15694, 19305, 23506, 28358, 33925, 40274, 47475, 55601, 64728, 74935, 86304, 98920, 112871, 128248, 145145, 163659, 183890, 205941, 229918, 255930
Offset: 1

Views

Author

Jonathan Vos Post, Aug 04 2007

Keywords

Comments

This is to n-th centered n-gonal numbers (A100119) as A101357 is to n-th n-gonal numbers (A060354). a(2) = 3 and a(4) = 29 are primes. a(39) = 284089 = 13^2 * 41^2.

Examples

			a(41) = 1 + 2 + 7 + 19 + 41 + 76 + 127 + 197 + 289 + 406 + 551 + 727 + 937 + 1184 + 1471 + 1801 + 2177 + 2602 + 3079 + 3611 + 4201 + 4852 + 5567 + 6349 + 7201 + 8126 + 9127 + 10207 + 11369 + 12616 + 13951 + 15377 + 16897 + 18514 + 20231 + 22051 + 23977 + 26012 + 28159 + 30421 + 32801 + 35302 = 382613.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{1,3,10,29,70},40] (* Harvey P. Dale, Jun 02 2018 *)

Formula

a(n) = (n*(26-3*n-2*n^2+3*n^3))/24. G.f.: x*(x^3-5*x^2+2*x-1) / (x-1)^5. - Colin Barker, Apr 29 2013

A296374 a(0) = 3; a(n) = a(n-1)*(a(n-1)^2 - 3*a(n-1) + 4)/2.

Original entry on oeis.org

3, 6, 66, 137346, 1295413937737986, 1086915296274625337063297033180803022465442306
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 11 2017

Keywords

Comments

The next term is too large to include.

Examples

			a(0) = 3;
a(1) = 6 and 6 is the 3rd triangular number;
a(2) = 66 and 66 is the 6th hexagonal number;
a(3) = 137346 and 137346 is the 66th 66-gonal number, etc.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 3, a[n] == a[n - 1] (a[n - 1]^2 - 3 a[n - 1] + 4)/2}, a[n], {n, 5}]

Formula

a(0) = 3; a(n) = [x^a(n-1)] x*(1 - 2*x + 4*x^2)/(1 - x)^4.
a(0) = 3; a(n) = a(n-1)! * [x^a(n-1)] exp(x)*x*(1 + x^2/2).

A301972 a(n) = n*(n^2 - 2*n + 4)*binomial(2*n,n)/((n + 1)*(n + 2)).

Original entry on oeis.org

0, 1, 4, 21, 112, 570, 2772, 13013, 59488, 266526, 1175720, 5123426, 22108704, 94645460, 402503220, 1702300725, 7165821120, 30043474230, 125523450360, 522857438070, 2172127120800, 9002522512620, 37233403401480, 153704429299746, 633442159732032, 2606543487445100, 10710790748646352, 43957192722175908
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 29 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the main diagonal of iterated partial sums array of n-gonal numbers (in other words, a(n) is the n-th (n+2)-dimensional n-gonal number, see also example).

Examples

			For n = 5 we have:
----------------------------
0   1    2    3     4    [5]
----------------------------
0,  1,   5,  12,   22,   35,  ... A000326 (pentagonal numbers)
0,  1,   6,  18,   40,   75,  ... A002411 (pentagonal pyramidal numbers)
0,  1,   7,  25,   65,  140,  ... A001296 (4-dimensional pyramidal numbers)
0,  1,   8,  33,   98,  238,  ... A051836 (partial sums of A001296)
0,  1,   9,  42,  140,  378,  ... A051923 (partial sums of A051836)
0,  1,  10,  52,  192, [570], ... A050494 (partial sums of A051923)
----------------------------
therefore a(5) = 570.
		

Crossrefs

Programs

  • Mathematica
    Table[n (n^2 - 2 n + 4) Binomial[2 n, n]/((n + 1) (n + 2)), {n, 0, 27}]
    nmax = 27; CoefficientList[Series[(-4 + 31 x - 66 x^2 + 28 x^3 + (4 - 7 x) (1 - 4 x)^(3/2))/(2 x^2 (1 - 4 x)^(3/2)), {x, 0, nmax}], x]
    nmax = 27; CoefficientList[Series[Exp[2 x] (4 - x + 2 x^2) BesselI[1, 2 x]/x - 2 Exp[2 x] (2 - x) BesselI[0, 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^(n + 3), {x, 0, n}], {n, 0, 27}]

Formula

O.g.f.: (-4 + 31*x - 66*x^2 + 28*x^3 + (4 - 7*x)*(1 - 4*x)^(3/2))/(2*x^2*(1 - 4*x)^(3/2)).
E.g.f.: exp(2*x)*(4 - x + 2*x^2)*BesselI(1,2*x)/x - 2*exp(2*x)*(2 - x)*BesselI(0,2*x).
a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^(n+3).
a(n) ~ 4^n*sqrt(n)/sqrt(Pi).
D-finite with recurrence: -(n+2)*(961*n-3215)*a(n) +4*(2081*n^2-4414*n-4668)*a(n-1) -28*(320*n-389)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jan 27 2020

A301973 a(n) = (n^2 - 3*n + 6)*binomial(n+2,3)/4.

Original entry on oeis.org

0, 1, 4, 15, 50, 140, 336, 714, 1380, 2475, 4180, 6721, 10374, 15470, 22400, 31620, 43656, 59109, 78660, 103075, 133210, 170016, 214544, 267950, 331500, 406575, 494676, 597429, 716590, 854050, 1011840, 1192136, 1397264, 1629705, 1892100, 2187255, 2518146, 2887924, 3299920, 3757650, 4264820
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 29 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the partial sums of n-gonal pyramidal numbers (in other words, a(n) is the n-th 4-dimensional n-gonal number).

Crossrefs

Programs

  • Mathematica
    Table[(n^2 - 3 n + 6) Binomial[n + 2, 3]/4, {n, 0, 40}]
    nmax = 40; CoefficientList[Series[x (1 - 2 x + 6 x^2)/(1 - x)^6, {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[x] x (24 + 24 x + 24 x^2 + 10 x^3 + x^4)/24, {x, 0, nmax}], x] Range[0, nmax]!
    Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^5, {x, 0, n}], {n, 0, 40}]
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 4, 15, 50, 140}, 41]

Formula

O.g.f.: x*(1 - 2*x + 6*x^2)/(1 - x)^6.
E.g.f.: exp(x)*x*(24 + 24*x + 24*x^2 + 10*x^3 + x^4)/24.
a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^5.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).

A330892 Square array of polygonal numbers read by descending antidiagonals (the transpose of A317302).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, -3, 1, 1, 0, -8, 0, 2, 1, 0, -15, -2, 3, 3, 1, 0, -24, -5, 4, 6, 4, 1, 0, -35, -9, 5, 10, 9, 5, 1, 0, -48, -14, 6, 15, 16, 12, 6, 1, 0, -63, -20, 7, 21, 25, 22, 15, 7, 1, 0, -80, -27, 8, 28, 36, 35, 28, 18, 8, 1, 0, -99, -35, 9, 36, 49, 51, 45, 34, 21, 9, 1, 0
Offset: 1

Views

Author

Robert G. Wilson v, Apr 27 2020

Keywords

Comments

\c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
r\
_0 0 1 0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195 A067998
_1 0 1 1 0 -2 -5 -9 -14 -20 -27 -35 -44 -54 -65 -77 -90 A080956
_2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A001477
_3 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 A000217
_4 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 A000290
_5 0 1 5 12 22 35 51 70 92 117 145 176 210 247 287 330 A000326
_6 0 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 A000384
_7 0 1 7 18 34 55 81 112 148 189 235 286 342 403 469 540 A000566
_8 0 1 8 21 40 65 96 133 176 225 280 341 408 481 560 645 A000567
_9 0 1 9 24 46 75 111 154 204 261 325 396 474 559 651 750 A001106
10 0 1 10 27 52 85 126 175 232 297 370 451 540 637 742 855 A001107
11 0 1 11 30 58 95 141 196 260 333 415 506 606 715 833 960 A051682
12 0 1 12 33 64 105 156 217 288 369 460 561 672 793 924 1065 A051624
13 0 1 13 36 70 115 171 238 316 405 505 616 738 871 1015 1170 A051865
14 0 1 14 39 76 125 186 259 344 441 550 671 804 949 1106 1275 A051866
15 0 1 15 42 82 135 201 280 372 477 595 726 870 1027 1197 1380 A051867
...
Each row has a second forward difference of (r-2) and each column has a forward difference of c(c-1)/2.

Crossrefs

Cf. A317302 (the same array) but read by ascending antidiagonals.
Sub-arrays: A089000, A139600, A206735;
Number of times k>1 appears: A129654, First occurrence of k: A063778.

Programs

  • Mathematica
    Table[ PolygonalNumber[r - c, c], {r, 0, 11}, {c, r, 0, -1}] // Flatten

Formula

P(r, c) = (r - 2)(c(c-1)/2) + c.

A341768 a(n) = n * (binomial(n,2) - 2).

Original entry on oeis.org

0, -2, -2, 3, 16, 40, 78, 133, 208, 306, 430, 583, 768, 988, 1246, 1545, 1888, 2278, 2718, 3211, 3760, 4368, 5038, 5773, 6576, 7450, 8398, 9423, 10528, 11716, 12990, 14353, 15808, 17358, 19006, 20755, 22608, 24568, 26638, 28821, 31120, 33538, 36078, 38743, 41536, 44460
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Comments

The n-th second n-gonal number.

Examples

			a(7) = A147875(7) = A000566(-7) = 133.
		

Crossrefs

Programs

  • Mathematica
    Table[n (Binomial[n, 2] - 2), {n, 0, 45}]
    LinearRecurrence[{4, -6, 4, -1}, {0, -2, -2, 3}, 46]
    CoefficientList[Series[-x (2 - 6 x + x^2)/(1 - x)^4, {x, 0, 45}], x]

Formula

G.f.: -x*(2 - 6*x + x^2)/(1 - x)^4.
E.g.f.: -exp(x)*x*(4 - 2*x - x^2)/2.
a(n) = n^2*(n - 1)/2 - 2*n.
Previous Showing 31-39 of 39 results.