cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A127108 Triangle read by rows, A127099 * A000012.

Original entry on oeis.org

1, 5, 2, 7, 3, 3, 17, 10, 4, 4, 11, 5, 5, 5, 5, 35, 23, 15, 6, 6, 6, 15, 7, 7, 7, 7, 7, 7, 49, 34, 20, 20, 8, 8, 8, 8, 34, 21, 21, 9, 9, 9, 9, 9, 9, 55, 37, 25, 25, 25, 10, 10, 10, 10, 10, 23, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 119, 91, 67, 46, 30, 30, 12, 12, 12, 12, 12, 12
Offset: 0

Views

Author

Gary W. Adamson, Jan 05 2007, Jul 27 2008

Keywords

Comments

The operation A000012 * A127099 generates n-th row of the triangle by taking partial sums of n-th row of triangle A127099. Row 4 of A127099 (7, 6, 0, 4) becomes row 4 of A127108: (17, 10, 4, 4).
Row sums = A001001: (1, 7, 13, 35, 31, 91, ...).
Left column of the triangle = A060640: (1, 5, 7, 17, 11, 35, ...).

Examples

			First few rows of the triangle:
   1;
   5,  2;
   7,  3,  3;
  17, 10,  4,  4;
  11,  5,  5,  5,  5;
  35, 23, 15,  6,  6,  6;
  15,  7,  7,  7,  7,  7,  7;
  49, 34, 20, 20,  8,  8,  8,  8;
  34, 21, 21,  9,  9,  9,  9,  9,  9;
  55, 37, 25, 25, 25, 10, 10, 10, 10, 10;
  ...
		

Crossrefs

Formula

Triangle read by rows, A127099 * A000012.

Extensions

Edited by N. J. A. Sloane, Aug 13 2008 at the suggestion of R. J. Mathar

A127168 Triangle read by rows: square of A126988.

Original entry on oeis.org

1, 4, 1, 6, 0, 1, 12, 4, 0, 1, 10, 0, 0, 0, 1, 24, 6, 4, 0, 0, 1, 14, 0, 0, 0, 0, 0, 1, 32, 12, 0, 4, 0, 0, 0, 1, 27, 0, 6, 0, 0, 0, 0, 0, 1, 40, 10, 0, 0, 4, 0, 0, 0, 0, 1, 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 72, 24, 12, 6, 0, 4, 0, 0, 0, 0, 0, 1, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gary W. Adamson, Jan 06 2007

Keywords

Comments

Row sums = A060640: (1, 5, 7, 17, 11, 35, 15, 49...) Left column = A038040, d(n)*n: (1, 4, 6, 12, 10, 24, 14, 32, 27, 40...). A127168 * A008683 = A018804, (1, 3, 5, 8, 9, 15...); where A008683 = the Mobius sequence.

Examples

			First few rows of the triangle are:
1;
4, 1;
6, 0, 1;
12, 4, 0, 1
10, 0, 0, 0, 1
24, 6, 4, 0, 0, 1
14, 0, 0, 0, 0, 0, 1;
32, 12, 0, 4, 0, 0, 0, 1;
...
		

Crossrefs

Extensions

a(20) = 1 inserted and more terms from Georg Fischer, May 31 2023

A143313 Triangle read by rows, A130540 * A000012, 1<=k<=n.

Original entry on oeis.org

1, 4, 1, 5, 1, 1, 11, 4, 1, 1, 7, 1, 1, 1, 1, 20, 8, 4, 1, 1, 19, 1, 1, 1, 1, 1, 1, 26, 11, 4, 4, 1, 1, 1, 1, 18, 5, 5, 1, 1, 1, 1, 1, 1, 28, 10, 4, 4, 4, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 55, 27, 15, 8, 4, 4, 1, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 06 2008

Keywords

Comments

Left border = A007429: (1, 4, 5, 11, 7, 20, 9,...).
Row sums = A060640: (1, 5, 7, 17, 11, 35,...).

Examples

			First few rows of the triangle =
1;
4, 1;
5, 1, 1;
11, 4, 1, 1;
7, 1, 1, 1, 1;
20, 8, 4, 1, 1, 1;
9, 1, 1, 1, 1, 1, 1;
...
Row 4 = (11, 4, 1, 1) since row 4 of A130540 = (7, 3, 0, 1).
		

Crossrefs

Formula

Triangle read by rows, A130540 * A000012, 1<=k<=n. Equals partial row sums of A130540 starting from the right.

A306705 a(n) = Product_{d|n} d*tau(d), where tau(k) = the number of the divisors of k (A000005).

Original entry on oeis.org

1, 4, 6, 48, 10, 576, 14, 1536, 162, 1600, 22, 497664, 26, 3136, 3600, 122880, 34, 1679616, 38, 2304000, 7056, 7744, 46, 3057647616, 750, 10816, 17496, 6322176, 58, 3317760000, 62, 23592960, 17424, 18496, 19600, 470184984576, 74, 23104, 24336, 23592960000, 82
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2019

Keywords

Examples

			a(6) = 1*tau(1) * 2*tau(2) * 3*tau(3) * 6*tau(6) = (1*1) * (2*2) * (3*2) * (6*4) = 576.
		

Crossrefs

Cf. A000005, A060640 (Sum_{d|n} d*tau(d)), A007955, A211776.

Programs

  • Magma
    [&*[d * NumberOfDivisors(d): d in Divisors(n)]: n in [1..100]]
    
  • Maple
    f:= proc(n) uses numtheory; local d;
      mul(d*tau(d),d = divisors(n))
    end proc:
    map(f, [$1..100]); # Robert Israel, Mar 24 2019
  • Mathematica
    Table[n^(DivisorSigma[0, n]/2) * Product[DivisorSigma[0, k], {k, Divisors[n]}], {n, 1, 60}] (* Vaclav Kotesovec, Mar 10 2019 *)
  • PARI
    a(n) = my(res = 1); fordiv(n, d, res *= d*numdiv(d)); res; \\ Michel Marcus, Mar 06 2019

Formula

a(p) = 2p for p = primes (A000040).
a(n) = (Product_{d|n} tau(d)) * (Product_{d|n} d) = A211776(n) * A007955(n).
From Robert Israel, Mar 24 2019: (Start)
a(p^k) = (k+1)! * p^(k*(k+1)/2) for primes p.
a(p*q) = 16*p^2*q^2 if p and q are distinct primes. (End)

A322104 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} d*sigma_k(d).

Original entry on oeis.org

1, 1, 5, 1, 7, 7, 1, 11, 13, 17, 1, 19, 31, 35, 11, 1, 35, 85, 95, 31, 35, 1, 67, 247, 311, 131, 91, 15, 1, 131, 733, 1127, 631, 341, 57, 49, 1, 259, 2191, 4295, 3131, 1615, 351, 155, 34, 1, 515, 6565, 16775, 15631, 8645, 2409, 775, 130, 55, 1, 1027, 19687, 66311, 78131, 49111, 16815, 4991, 850, 217, 23
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
   1,   1,    1,     1,     1,      1,  ...
   5,   7,   11,    19,    35,     67,  ...
   7,  13,   31,    85,   247,    733,  ...
  17,  35,   95,   311,  1127,   4295,  ...
  11,  31,  131,   631,  3131,  15631,  ...
  35,  91,  341,  1615,  8645,  49111,  ...
		

Crossrefs

Columns k=0..3 give A060640, A001001, A027847, A027848.
Cf. A109974, A320940 (diagonal), A321876, A322103.

Programs

  • Mathematica
    Table[Function[k, Sum[d DivisorSigma[k, d], {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[j DivisorSigma[k, j] x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, d^(k+1)*sigma(n/d))}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} j*sigma_k(j)*x^j/(1 - x^j).
L.g.f. of column k: -log(Product_{j>=1} (1 - x^j)^sigma_k(j)).
A(n,k) = Sum_{d|n} d^(k+1)*sigma_1(n/d).

A340850 Dirichlet g.f.: Sum_{n>0} a(n)/n^s = zeta(s) * zeta(s-2) / (zeta(s-1))^2.

Original entry on oeis.org

1, 1, 4, 5, 16, 4, 36, 21, 40, 16, 100, 20, 144, 36, 64, 85, 256, 40, 324, 80, 144, 100, 484, 84, 416, 144, 364, 180, 784, 64, 900, 341, 400, 256, 576, 200, 1296, 324, 576, 336, 1600, 144, 1764, 500, 640, 484, 2116, 340, 1800, 416, 1024, 720, 2704, 364, 1600, 756, 1296, 784
Offset: 1

Views

Author

Werner Schulte, Jan 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(2*e) - 1)*(p - 1)/(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 24 2021 *)

Formula

Multiplicative with a(1) = 1 and a(p^e) = (p^(2*e)-1) * (p-1) / (p+1) for prime p and e > 0.
Dirichlet convolution of A002618 and A023900.
Dirichlet convolution of A001157 and A328722.
Dirichlet inverse b(n) for n > 0 is multiplicative with b(1) = 1 and b(p^e) = -(p-1)^2 * e * p^(e-1) for prime p and e > 0.
Dirichlet convolution with A060640 equals A007433.
Dirichlet convolution with A018804 equals A000290.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 12*zeta(3)/Pi^4 = 0.148083... . - Amiram Eldar, Oct 16 2022

A344787 a(n) = n * Sum_{d|n} sigma_d(d) / d, where sigma_k(n) is the sum of the k-th powers of the divisors of n.

Original entry on oeis.org

1, 7, 31, 287, 3131, 47527, 823551, 16843583, 387440266, 10009772937, 285311670623, 8918294639219, 302875106592267, 11112685050294387, 437893920912795941, 18447025553014982271, 827240261886336764195, 39346558271492953948522, 1978419655660313589123999
Offset: 1

Views

Author

Wesley Ivan Hurt, May 28 2021

Keywords

Comments

If p is prime, a(p) = p * Sum_{d|p} sigma_d(d) / d = p * (1 + (1^p + p^p)/p) = 1 + p + p^p.

Examples

			a(4) = 4 * Sum_{d|4} sigma_d(d) / d = 4 * ((1^1)/1 + (1^2 + 2^2)/2 + (1^4 + 2^4 + 4^4)/4) = 287.
		

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[DivisorSigma[k, k] (1 - Ceiling[n/k] + Floor[n/k])/k, {k, n}], {n, 20}]
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k, k)*x^k/(1-x^k)^2)) \\ Seiichi Manyama, Dec 16 2022

Formula

G.f.: Sum_{k>=1} sigma_k(k) * x^k/(1 - x^k)^2. - Seiichi Manyama, Dec 16 2022

A360429 Inverse Mobius transformation of A034714.

Original entry on oeis.org

1, 9, 19, 57, 51, 171, 99, 313, 262, 459, 243, 1083, 339, 891, 969, 1593, 579, 2358, 723, 2907, 1881, 2187, 1059, 5947, 1926, 3051, 3178, 5643, 1683, 8721, 1923, 7737, 4617, 5211, 5049, 14934, 2739, 6507, 6441, 15963, 3363, 16929, 3699, 13851, 13362, 9531, 4419, 30267, 7302, 17334
Offset: 1

Views

Author

R. J. Mathar, Feb 07 2023

Keywords

Crossrefs

Programs

  • Maple
    A360429 := proc(n)
        add(numtheory[tau](d)*d^2,d=numtheory[divisors](n)) ;
    end proc:
  • Mathematica
    f[p_, e_] := ((e+1)*p^(2*e+4) - (e+2)*p^(2*e+2) + 1)/(p^2-1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 09 2023 *)

Formula

a(n) = Sum_{d|n} A000005(d)*d^2.
Dirichlet convolution of A034714 and A000012.
Dirichlet g.f.: zeta^2(s-2)*zeta(s).
From Amiram Eldar, Feb 09 2023: (Start)
Multiplicative with a(p^e) = ((e+1)*p^(2*e+4) - (e+2)*p^(2*e+2) + 1)/(p^2-1)^2.
Sum_{k=1..n} a(k) ~ (log(n) + 2*gamma - 1/3 + zeta'(3)/zeta(3)) * n^3 * zeta(3)/3, where gamma is Euler's constant (A001620). (End)

A127572 Triangle, T(n,k) = sigma(k) * n/k if k|n, T(n,k) = 0 otherwise.

Original entry on oeis.org

1, 2, 3, 3, 0, 4, 4, 6, 0, 7, 5, 0, 0, 0, 6, 6, 9, 8, 0, 0, 12, 7, 0, 0, 0, 0, 0, 8, 8, 12, 0, 14, 0, 0, 0, 15, 9, 0, 12, 0, 0, 0, 0, 0, 13, 10, 15, 0, 0, 12, 0, 0, 0, 0, 18
Offset: 1

Views

Author

Gary W. Adamson, Jan 19 2007

Keywords

Examples

			First few rows of the triangle are:
1;
2, 3;
3, 0, 4;
4, 6, 0, 7;
5, 0, 0, 0, 6;
6, 9, 8, 0, 0, 12;
...
		

Crossrefs

Main diagonal = sigma(n), A000203; row sums = A060640.
Cf. A126988.

Formula

A126988 * M, where M = an infinite matrix with sigma(n) in the main diagonal and the rest zeros.

Extensions

Edited by Franklin T. Adams-Watters, Aug 24 2011

A344042 a(n) = n * Sum_{d|n} sigma(d)^2 / d.

Original entry on oeis.org

1, 11, 19, 71, 41, 209, 71, 367, 226, 451, 155, 1349, 209, 781, 779, 1695, 341, 2486, 419, 2911, 1349, 1705, 599, 6973, 1166, 2299, 2278, 5041, 929, 8569, 1055, 7359, 2945, 3751, 2911, 16046, 1481, 4609, 3971, 15047, 1805, 14839, 1979, 11005, 9266, 6589, 2351, 32205, 3746, 12826, 6479
Offset: 1

Views

Author

Seiichi Manyama, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n * DivisorSum[n, DivisorSigma[1, #]^2/# &]; Array[a, 51] (* Amiram Eldar, May 08 2021 *)
  • PARI
    a(n) = n*sumdiv(n, d, sigma(d)^2/d);
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k)^2*x^k/(1-x^k)^2))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p^2*X^2) / ((1 - X) * (1 - p*X)^3 * (1 - p^2*X)))[n], ", ")) \\ Vaclav Kotesovec, May 08 2021

Formula

G.f.: Sum_{k >= 1} sigma(k)^2 * x^k/(1 - x^k)^2.
From Vaclav Kotesovec, May 08 2021: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-1)^3 * zeta(s-2) / zeta(2*s-2).
Sum_{k=1..n} a(k) ~ 5 * Pi^2 * zeta(3) * n^3 / 36. (End)
Previous Showing 31-40 of 40 results.