cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 70 results. Next

A060683 Numbers for which the differences between consecutive divisors (ordered by size) are distinct.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 76, 77, 79, 81, 82, 83, 85, 86, 87, 88, 89, 92, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Labos Elemer, Apr 19 2001

Keywords

Comments

A060682(a(n)) = A000005(a(n)) - 1, n > 1. - Reinhard Zumkeller, Jun 25 2015

Examples

			For n=6, divisors={1,2,3,6}; differences={1,1,3}, which are not distinct, so 6 is not in the sequence.
		

Crossrefs

Cf. A060682, A259366 (complement).

Programs

  • Haskell
    a060683 n = a060683_list !! (n-1)
    a060683_list = 1 : filter (\x -> a060682 x == a000005' x - 1) [2..]
    -- Reinhard Zumkeller, Jun 25 2015
    
  • Mathematica
    test[n_ ] := Length[dd=Drop[d=Divisors[n], 1]-Drop[d, -1]]==Length[Union[dd]]; Select[Range[1, 100], test]
  • PARI
    isok(k) = my(d=divisors(k)); #Set(vector(#d-1, k, d[k+1]-d[k])) == #d-1; \\ Michel Marcus, Nov 11 2023

Extensions

Edited by Dean Hickerson, Jan 22 2002

A258409 Greatest common divisor of all (d-1)'s, where the d's are the positive divisors of n.

Original entry on oeis.org

1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 12, 1, 2, 1, 16, 1, 18, 1, 2, 1, 22, 1, 4, 1, 2, 1, 28, 1, 30, 1, 2, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 2, 1, 46, 1, 6, 1, 2, 1, 52, 1, 2, 1, 2, 1, 58, 1, 60, 1, 2, 1, 4, 1, 66, 1, 2, 1, 70, 1, 72, 1, 2, 1, 2, 1, 78, 1
Offset: 2

Views

Author

Ivan Neretin, May 29 2015

Keywords

Comments

a(n) = 1 for even n; a(p) = p-1 for prime p.
a(n) is even for odd n (since all divisors of n are odd).
It appears that a(n) = A052409(A005179(n)), i.e., it is the largest integer power of the smallest number with exactly n divisors. - Michel Marcus, Nov 10 2015
Conjecture: GCD of all (p-1) for prime p|n. - Thomas Ordowski, Sep 14 2016
Conjecture is true, because the set of numbers == 1 (mod g) is closed under multiplication. - Robert Israel, Sep 14 2016
Conjecture: a(n) = A289508(A328023(n)) = GCD of the differences between consecutive divisors of n. See A328163 and A328164. - Gus Wiseman, Oct 16 2019

Examples

			65 has divisors 1, 5, 13, and 65, hence a(65) = gcd(1-1,5-1,13-1,65-1) = gcd(0,4,12,64) = 4.
		

Crossrefs

Cf. A084190 (similar but with LCM).
Looking at prime indices instead of divisors gives A328167.
Partitions whose parts minus 1 are relatively prime are A328170.

Programs

  • Haskell
    a258409 n = foldl1 gcd $ map (subtract 1) $ tail $ a027750_row' n
    -- Reinhard Zumkeller, Jun 25 2015
  • Maple
    f:= n -> igcd(op(map(`-`,numtheory:-factorset(n),-1))):
    map(f, [$2..100]); # Robert Israel, Sep 14 2016
  • Mathematica
    Table[GCD @@ (Divisors[n] - 1), {n, 2, 100}]
  • PARI
    a(n) = my(g=0); fordiv(n, d, g = gcd(g, d-1)); g; \\ Michel Marcus, May 29 2015
    
  • PARI
    a(n) = gcd(apply(x->x-1, divisors(n))); \\ Michel Marcus, Nov 10 2015
    
  • PARI
    a(n)=if(n%2==0, return(1)); if(n%3==0, return(2)); if(n%5==0 && n%4 != 1, return(2)); gcd(apply(p->p-1, factor(n)[,1])) \\ Charles R Greathouse IV, Sep 19 2016
    

A060682 Number of distinct differences between consecutive divisors of n (ordered by size).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 3, 1, 3, 2, 4, 1, 3, 1, 4, 3, 3, 1, 4, 2, 3, 3, 5, 1, 5, 1, 5, 3, 3, 3, 5, 1, 3, 3, 5, 1, 4, 1, 5, 4, 3, 1, 5, 2, 5, 3, 5, 1, 4, 3, 6, 3, 3, 1, 7, 1, 3, 4, 6, 3, 5, 1, 5, 3, 6, 1, 6, 1, 3, 3, 5, 3, 5, 1, 7, 4, 3, 1, 6, 3, 3, 3, 7, 1, 7, 2, 5, 3, 3, 3, 6, 1, 5, 4, 6, 1, 5, 1, 7, 5, 3
Offset: 2

Views

Author

Labos Elemer, Apr 19 2001

Keywords

Comments

Number of all differences for n is d(n)-1 = A000005(n)-1. Increments are not necessarily different, so a(n)<=d(n)-1.

Examples

			For n=70, divisors={1,2,5,7,10,14,35,70}; differences={1,3,2,3,4,21,35}; a(70) = number of distinct differences = 6.
		

Crossrefs

Programs

  • Haskell
    import Data.List (nub, genericLength)
    a060682 = genericLength . nub . a193829_row
    -- Reinhard Zumkeller, Jun 25 2015
    
  • Mathematica
    a[n_ ] := Length[Union[Drop[d=Divisors[n], 1]-Drop[d, -1]]]
  • PARI
    a(n) = my(d=divisors(n)); #vecsort(vector(#d-1, k, d[k+1] - d[k]),,8); \\ Michel Marcus, Jul 04 2017

Extensions

Edited by Dean Hickerson, Jan 22 2002

A326062 a(1) = gcd((sigma(n)-A032742(n))-n, n-A032742(n)), where A032742 gives the largest proper divisor of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 6, 1, 1, 1, 10, 2, 12, 1, 2, 1, 16, 3, 18, 2, 2, 1, 22, 12, 1, 1, 2, 14, 28, 3, 30, 1, 2, 1, 2, 1, 36, 1, 2, 10, 40, 3, 42, 2, 6, 1, 46, 4, 1, 1, 2, 2, 52, 3, 2, 4, 2, 1, 58, 6, 60, 1, 2, 1, 2, 3, 66, 2, 2, 1, 70, 3, 72, 1, 2, 2, 2, 3, 78, 2, 1, 1, 82, 14, 2, 1, 2, 4, 88, 9, 2, 2, 2, 1, 2, 12, 96, 1, 6, 1, 100, 3, 102, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Comments

See comments in A326063 and A326064.

Crossrefs

Programs

Formula

a(1) = 1; for n > 1, a(n) = gcd(A060681(n), A318505(n)).
a(n) = gcd((A000203(n)-A032742(n))-n, n-A032742(n)).

A356229 Number of maximal gapless submultisets of the prime indices of 2n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
This is a bisection of A287170, but is important in its own right because the even numbers are exactly those whose prime indices begin with 1.

Examples

			The prime indices of 2*9282 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(9282) = 3.
		

Crossrefs

This is the even (bisected) case of A287170, firsts A066205.
Alternate row-lengths of A356226, minima A356227(2n), maxima A356228(2n).
A001221 counts distinct prime factors, sum A001414.
A001222 counts prime indices, listed by A112798, sum A056239.
A003963 multiplies together the prime indices of n.
A073093 counts the prime indices of 2n.
A073491 lists numbers with gapless prime indices, cf. A073492-A073495.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Split[primeMS[2n],#1>=#2-1&]],{n,100}]
  • PARI
    A287170(n) = { my(f=factor(n)); if(#f~==0, return (0), return(#f~ - sum(i=1, #f~-1, if (primepi(f[i, 1])+1 == primepi(f[i+1, 1]), 1, 0)))); };
    A356229(n) = A287170(2*n); \\ Antti Karttunen, Jan 19 2025

Formula

a(n) = A287170(2n).

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 19 2025

A073934 Sum of terms in n-th row of triangle in A073932.

Original entry on oeis.org

1, 3, 6, 7, 12, 12, 19, 15, 21, 22, 33, 24, 37, 33, 37, 31, 48, 39, 58, 42, 54, 55, 78, 48, 67, 63, 66, 61, 90, 67, 98, 63, 88, 82, 96, 75, 112, 96, 102, 82, 123, 96, 139, 99, 112, 124, 171, 96, 145, 117, 133, 115, 168, 120, 154, 117, 153, 148, 207, 127, 188, 160
Offset: 1

Views

Author

Amarnath Murthy, Aug 19 2002

Keywords

Crossrefs

Programs

  • Maple
    a[1] := 1:for i from 2 to 500 do n := i:s := n:while(n>1) do if isprime(n) then r := n-1: else r := n-n/ifactors(n)[2][1][1]; fi; n := r:s := s+n:od:a[i] := s:od:seq(a[k],k=1..500);
  • Mathematica
    Array[If[# == 1, 1, Total@ NestWhileList[If[PrimeQ@ #, # - 1, # - #/FactorInteger[#][[1, 1]] ] &, #, # > 1 &]] &, 62]
  • Scheme
    (define (A073934 n) (if (= 1 n) n (+ n (A073934 (A060681 n)))))
    (define (A060681 n) (- n (A032742 n))) ;; See also code under A032742
    ;; Antti Karttunen, Aug 23 2017

Formula

a(1) = 1; for n > 1, a(n) = n + a(A060681(n)). - Antti Karttunen, Aug 23 2017

Extensions

More terms from Sascha Kurz, Aug 23 2002
Offset corrected from 0 to 1 by Antti Karttunen, Aug 23 2017

A328026 Number of divisible pairs of consecutive divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 4, 1, 3, 1, 4, 2, 2, 1, 2, 2, 2, 3, 4, 1, 2, 1, 5, 2, 2, 2, 2, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 2, 2, 3, 2, 4, 1, 4, 2, 4, 2, 2, 1, 2, 1, 2, 2, 6, 2, 4, 1, 4, 2, 2, 1, 2, 1, 2, 3, 4, 2, 4, 1, 4, 4, 2, 1, 2, 2, 2, 2, 6, 1, 2, 2, 4, 2, 2, 2, 2, 1, 3, 4, 6, 1, 4, 1, 6, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 03 2019

Keywords

Comments

The number m = 2^n, n >= 0, is the smallest for which a(m) = n. - Marius A. Burtea, Nov 20 2019

Examples

			The divisors of 500 are {1,2,4,5,10,20,25,50,100,125,250,500}, with consecutive divisible pairs {1,2}, {2,4}, {5,10}, {10,20}, {25,50}, {50,100}, {125,250}, {250,500}, so a(500) = 8.
		

Crossrefs

Positions of 1's are A000040.
Positions of 0's and 2's are A328028.
Positions of terms > 2 are A328189.
Successive pairs of consecutive divisors are counted by A129308.

Programs

  • Magma
    f:=func;  g:=func; [g(n):n in [1..100]]; // Marius A. Burtea, Nov 20 2019
  • Mathematica
    Table[Length[Split[Divisors[n],!Divisible[#2,#1]&]]-1,{n,100}]
  • PARI
    a(n) = {my(d=divisors(n), nb=0); for (i=2, #d, if ((d[i] % d[i-1]) == 0, nb++)); nb;} \\ Michel Marcus, Oct 05 2019
    

Formula

a(p^k) = k for any prime number p and k >= 0. - Rémy Sigrist, Oct 05 2019

Extensions

Data section extended up to a(105) by Antti Karttunen, Feb 23 2023

A334111 Irregular triangle where row n gives all terms k for which A064097(k) = n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 13, 14, 15, 17, 18, 20, 24, 32, 19, 21, 22, 25, 26, 27, 28, 30, 34, 36, 40, 48, 64, 23, 29, 31, 33, 35, 37, 38, 39, 41, 42, 44, 45, 50, 51, 52, 54, 56, 60, 68, 72, 80, 96, 128, 43, 46, 49, 53, 55, 57, 58, 61, 62, 63, 65, 66, 70, 73, 74, 75, 76, 78, 81, 82, 84
Offset: 0

Views

Author

Keywords

Comments

Applying map k -> (p-1)*(k/p) to any term k on any row n > 1, where p is any prime factor of k, gives one of the terms on preceding row n-1.
Any prime that appears on row n is 1 + {some term on row n-1}.
The e-th powers of the terms on row n form a subset of terms on row (e*n). More generally, a product of terms that occur on rows i_1, i_2, ..., i_k can be found at row (i_1 + i_2 + ... + i_k), because A064097 is completely additive.
A001221(k) gives the number of terms on the row above that are immediate descendants of k.
A067513(k) gives the number of terms on the row below that lead to k.

Examples

			Rows 0-6 of the irregular table:
0 |   1;
1 |   2;
2 |   3, 4;
3 |   5, 6, 8;
4 |   7, 9, 10, 12, 16;
5 |  11, 13, 14, 15, 17, 18, 20, 24, 32;
6 |  19, 21, 22, 25, 26, 27, 28, 30, 34, 36, 40, 48, 64;
		

Crossrefs

Cf. A105017 (left edge), A000079 (right edge), A175125 (row lengths).
Cf. also A058812, A334100.

Programs

  • Mathematica
    f[n_] := Length@ NestWhileList[# - #/FactorInteger[#][[1, 1]] &, n, # != 1 &]; SortBy[ Range@70, f]
    (* Second program *)
    With[{nn = 8}, Values@ Take[KeySort@ PositionIndex@ Array[-1 + Length@ NestWhileList[# - #/FactorInteger[#][[1, 1]] &, #, # > 1 &] &, 2^nn], nn + 1]] // Flatten (* Michael De Vlieger, Apr 18 2020 *)
  • PARI
    A060681(n) = (n-if(1==n,n,n/vecmin(factor(n)[,1])));
    A064097(n) = if(1==n,0,1+A064097(A060681(n)));
    for(n=0, 10, for(k=1,2^n,if(A064097(k)==n, print1(k,", "))));

A073933 Number of terms in n-th row of triangle in A073932.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 6, 5, 6, 6, 7, 6, 7, 7, 8, 6, 7, 7, 7, 7, 8, 7, 8, 6, 8, 7, 8, 7, 8, 8, 8, 7, 8, 8, 9, 8, 8, 9, 10, 7, 9, 8, 8, 8, 9, 8, 9, 8, 9, 9, 10, 8, 9, 9, 9, 7, 9, 9, 10, 8, 10, 9, 10, 8, 9, 9, 9, 9, 10, 9, 10, 8, 9, 9, 10, 9, 9, 10, 10, 9, 10, 9, 10, 10, 10, 11, 10, 8
Offset: 1

Views

Author

Amarnath Murthy, Aug 19 2002

Keywords

Crossrefs

One more than A064097.

Programs

  • Maple
    a[1] := 1:for i from 2 to 500 do n := i:s := 1:while(n>1) do if isprime(n) then r := n-1: else r := n-n/ifactors(n)[2][1][1]; fi; n := r:s := s+1:od:a[i] := s:od:seq(a[k],k=1..500);
  • Scheme
    (define (A073933 n) (if (= 1 n) n (+ 1 (A073933 (A060681 n)))))
    (define (A060681 n) (- n (A032742 n))) ;; See also code under A032742
    ;; Antti Karttunen, Aug 23 2017

Formula

From Antti Karttunen, Aug 23 2017: (Start)
a(1) = 1; for n > 1, a(n) = 1 + a(A060681(n)).
a(n) = 1 + A064097(n).
(End)

Extensions

More terms from Sascha Kurz, Aug 23 2002
Offset corrected from 0 to 1 by Antti Karttunen, Aug 23 2017

A323077 Number of iterations of map x -> (x - (largest divisor d < x)) needed to reach 1 or a prime, when starting at x = n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 2, 1, 0, 2, 0, 1, 2, 3, 0, 3, 0, 2, 2, 1, 0, 3, 3, 1, 4, 2, 0, 3, 0, 4, 2, 1, 3, 4, 0, 1, 2, 3, 0, 3, 0, 2, 4, 1, 0, 4, 4, 4, 2, 2, 0, 5, 3, 3, 2, 1, 0, 4, 0, 1, 4, 5, 3, 3, 0, 2, 2, 4, 0, 5, 0, 1, 5, 2, 4, 3, 0, 4, 6, 1, 0, 4, 3, 1, 2, 3, 0, 5, 4, 2, 2, 1, 3, 5, 0, 5, 4, 5, 0, 3, 0, 3, 5
Offset: 1

Views

Author

Antti Karttunen, Jan 04 2019

Keywords

Comments

When iteration is started from n, the first noncomposite reached is A006530(n), from which follows the new formula a(n) = A064097(A052126(n)) = A064097(n/A006530(n)), as A064097 is completely additive sequence. - Antti Karttunen, May 15 2020

Crossrefs

Cf. A334198 (positions of the records, also the first occurrence of each n).
Differs from A334201 for the first time at n=169, where a(169) = 5, while A334201(169) = 6.

Programs

  • Mathematica
    Nest[Append[#1, If[PrimeOmega[#2] <= 1, 0, 1 + #1[[Max@ Differences@ Divisors[#2] ]] ]] & @@ {#, Length@ # + 1} &, {}, 105] (* Michael De Vlieger, May 26 2020 *)
  • PARI
    A060681(n) = (n-if(1==n,n,n/vecmin(factor(n)[,1])));
    A323077(n) = if(1>=bigomega(n),0,1+A323077(A060681(n)));

Formula

If A001222(n) <= 1 [when n is 1 or a prime], a(n) = 0, otherwise a(n) = 1 + a(A060681(n)).
a(n) <= A064097(n).
a(n) = A064097(n) - A334202(n) = A064097(A052126(n)). - Antti Karttunen, May 13 2020
a(A334198(n)) = n for all n >= 0. - Antti Karttunen, May 19 2020
Previous Showing 21-30 of 70 results. Next