cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A172370 Mirrored triangle A120072 read by rows.

Original entry on oeis.org

3, 5, 8, 7, 3, 15, 9, 16, 21, 24, 11, 5, 1, 2, 35, 13, 24, 33, 40, 45, 48, 15, 7, 39, 3, 55, 15, 63, 17, 32, 5, 56, 65, 8, 77, 80, 19, 9, 51, 4, 3, 21, 91, 6, 99, 21, 40, 57, 72, 85, 96, 105, 112, 117, 120, 23, 11, 7, 5, 95, 1, 119, 1, 5, 35, 143, 25, 48, 69, 88, 105, 120, 133, 144
Offset: 2

Views

Author

Paul Curtz, Feb 01 2010

Keywords

Comments

A table of numerators of 1/n^2 - 1/m^2 extended to negative m looks as follows, stacked such that values of common m are aligned
and the central column of -1 is defined for m=0:
.............................0..-1...0...3...8..15..24..35..48..63..80..99. A005563
.........................0..-3..-1..-3...0...5...3..21...2..45..15..77...6. A061037
.....................0..-5..-8..-1..-8..-5...0...7..16...1..40..55...8..91. A061039
.................0..-7..-3.-15..-1.-15..-3..-7...0...9...5..33...3..65..21. A061041
.............0..-9.-16.-21.-24..-1.-24.-21.-16..-9...0..11..24..39..56...3. A061043
.........0.-11..-5..-1..-2.-35..-1.-35..-2..-1..-5.-11...0..13...7...5...4. A061045
.....0.-13.-24.-33.-40.-45.-48..-1.-48.-45.-40.-33.-24.-13...0..15..32..51. A061047
.0.-15..-7.-39..-3.-55.-15.-63..-1.-63.-15.-55..-3.-39..-7.-15...0..17...9. A061049
The row-reversed variant of A120072 appears (negated) after the leftmost 0.
Equals A061035 with the first column removed. - Georg Fischer, Jul 26 2023

Examples

			The table starts
   3
   5   8
   7   3  15
   9  16  21  24
  11   5   1   2  35
  13  24  33  40  45  48
  15   7  39   3  55  15  63
  17  32   5  56  65   8  77  80
  19   9  51   4   3  21  91   6  99
		

Crossrefs

Lower diagonal gives: A070262, A061037(n+2).

Programs

  • Magma
    [[Numerator(1/(n-k)^2 -1/n^2): k in [1..n-1]]: n in [2..20]]; // G. C. Greubel, Sep 20 2018
  • Mathematica
    Table[Numerator[1/(n-k)^2 -1/n^2], {n, 2, 20}, {k, 1, n-1}]//Flatten (* G. C. Greubel, Sep 20 2018 *)
  • PARI
    for(n=2,20, for(k=1,n-1, print1(numerator(1/(n-k)^2 -1/n^2), ", "))) \\ G. C. Greubel, Sep 20 2018
    

Formula

T(n,m) = numerator of 1/(n-m)^2 - 1/n^2, n >= 2, 1 <= m < n. - R. J. Mathar, Nov 23 2010

Extensions

Comment rewritten and offset set to 2 by R. J. Mathar, Nov 23 2010

A061048 Denominator of 1/49 - 1/n^2.

Original entry on oeis.org

1, 3136, 3969, 4900, 5929, 7056, 8281, 196, 11025, 12544, 14161, 15876, 17689, 19600, 441, 23716, 25921, 28224, 30625, 33124, 35721, 784, 41209, 44100, 47089, 50176, 53361, 56644, 1225, 63504, 67081, 70756, 74529, 78400, 82369
Offset: 7

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Crossrefs

Cf. A061047 (numerator).

Programs

  • Mathematica
    Table[Denominator[1/7^2 - 1/n^2], {n, 7, 50}] (* G. C. Greubel, Jul 07 2017 *)
  • PARI
    for(n=7,50, print1(denominator(1/7^2 - 1/n^2), ", ")) \\ G. C. Greubel, Jul 07 2017

A174233 Triangle T(n,k) read by rows: the numerator of 1/n^2 - 1/(k-n)^2, 0 <= k < 2n.

Original entry on oeis.org

0, -1, 0, -3, -1, -3, 0, -5, -8, -1, -8, -5, 0, -7, -3, -15, -1, -15, -3, -7, 0, -9, -16, -21, -24, -1, -24, -21, -16, -9, 0, -11, -5, -1, -2, -35, -1, -35, -2, -1, -5, -11, 0, -13, -24, -33, -40, -45, -48, -1, -48, -45, -40, -33, -24, -13, 0, -15, -7, -39, -3, -55, -15, -63
Offset: 1

Views

Author

Paul Curtz, Mar 13 2010

Keywords

Comments

A value of -1 is substituted at the poles where k=n.
The triangle is created by selecting the first 2, 4, 6 etc elements of the array shown in A172370, equivalent to attaching the initial elements of the rows of A172157 to the rows of A174190.
If the first column of zeros is removed from the triangle, each row is left-right symmetric with respect to the center value.

Examples

			The triangle starts
  0,  -1;
  0,  -3,  -1,  -3;
  0,  -5,  -8,  -1,  -8,  -5;
  0,  -7,  -3, -15,  -1, -15,  -3,  -7;
  0,  -9, -16, -21, -24,  -1, -24, -21, -16,  -9;
  0, -11,  -5,  -1,  -2, -35,  -1, -35,  -2,  -1,  -5, -11;
  0, -13, -24, -33, -40, -45, -48,  -1, -48, -45, -40, -33, -24, -13;
		

Crossrefs

Programs

  • Maple
    A173233 := proc(n,k) if k = n then -1 ; else 1/n^2-1/(k-n)^2 ; numer(%) ; end if; end proc: # R. J. Mathar, Jan 06 2011
  • Mathematica
    T[n_, n_] := -1; T[n_, k_] := 1/n^2 - 1/(k - n)^2; Table[Numerator[T[n, k]], {n, 1, 20}, {k, 0, 2 n - 1}]//Flatten (* G. C. Greubel, Sep 19 2018 *)

A061036 Triangle T(m,n) = denominator of 1/m^2 - 1/n^2, n >= 1, m=n,n-1,n-2,...,1.

Original entry on oeis.org

1, 1, 4, 1, 36, 9, 1, 144, 16, 16, 1, 400, 225, 100, 25, 1, 900, 144, 12, 9, 36, 1, 1764, 1225, 784, 441, 196, 49, 1, 3136, 576, 1600, 64, 576, 64, 64, 1, 5184, 3969, 324, 2025, 1296, 81, 324, 81, 1, 8100, 1600, 4900, 225, 100, 400, 900, 25, 100, 1, 12100, 9801
Offset: 1

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Comments

Wavelengths in hydrogen spectrum are given by Rydberg's formula 1/wavelength = constant*(1/m^2 - 1/n^2).

Examples

			Triangle 1/m^2-1/n^2, m >= 1, 1<=n<=m, (i.e. with rows reversed) begins
0
3/4, 0
8/9, 5/36, 0
15/16, 3/16, 7/144, 0
24/25, 21/100, 16/225, 9/400, 0
35/36, 2/9, 1/12, 5/144, 11/900, 0
		

References

  • J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 77.

Crossrefs

Cf. A061035. Rows give A061037-A061050.
Cf. A126252.

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a061036 n k = a061036_tabl !! (n-1) !! (k-1)
    a061036_row = map denominator . balmer where
       balmer n = map (subtract (1 % n ^ 2) . (1 %) . (^ 2)) [n, n-1 .. 1]
    a061036_tabl = map a061036_row [1..]
    -- Reinhard Zumkeller, Apr 12 2012
  • Mathematica
    t[m_, n_] := Denominator[1/m^2 - 1/n^2]; Table[t[m, n], {n, 1, 12}, {m, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 17 2012 *)

Extensions

More terms from Naohiro Nomoto, Jul 15 2001

A175779 Triangle T(n,m) read by rows: numerator of 1/(n-m)^2 - 1/n^2.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 5, 8, 1, 0, 7, 3, 15, 1, 0, 9, 16, 21, 24, 1, 0, 11, 5, 1, 2, 35, 1, 0, 13, 24, 33, 40, 45, 48, 1, 0, 15, 7, 39, 3, 55, 15, 63, 1, 0, 17, 32, 5, 56, 65, 8, 77, 80
Offset: 0

Views

Author

Paul Curtz, Dec 04 2010

Keywords

Comments

T(n,0) is set to zero at the pole m=0. T(n,n) is otherwise set to 1 at the pole n=m.
This is the triangle A061035 augmented by a diagonal of 1's.
Essentially the same information is in A120072, A166492, A172157 and A174233.

Examples

			The triangle starts in row n=0 with columns 0<=m<=n as:
.1.
.0..1.
.0..3..1.
.0..5..8..1.
.0..7..3.15..1.
.0..9.16.21.24..1.
.0.11..5..1..2.35..1.
.0.13.24.33.40.45.48..1.
.0.15..7.39..3.55.15.63..1.
.0.17.32..5.56.65..8.77.80..1.
.0.19..9.51..4..3.21.91..6.99..1.
		

Crossrefs

Cf. A172157, A166925, A171522 (denominators)

Programs

  • Mathematica
    T[n_, n_] := 1; T[n_, k_] := 1/(n - k)^2 - 1/n^2; Table[Numerator[T[n, k]], {n, 0, 20}, {k, 0, n}] // Flatten  (* G. C. Greubel, Sep 19 2018 *)

A174190 Triangle T(n,m) = numerator of 1/n^2-1/(n-m)^2, read by rows.

Original entry on oeis.org

0, 0, -3, 0, -5, -8, 0, -7, -3, -15, 0, -9, -16, -21, -24, 0, -11, -5, -1, -2, -35, 0, -13, -24, -33, -40, -45, -48, 0, -15, -7, -39, -3, -55, -15, -63, 0, -17, -32, -5, -56, -65, -8, -77, -80, 0, -19, -9, -51, -4, -3, -21, -91, -6, -99, 0, -21, -40, -57, -72, -85, -96
Offset: 1

Views

Author

Paul Curtz, Mar 11 2010

Keywords

Comments

The triangle contains the initial values of the array described in A172370.
Ignoring details of column indexing, these are the negated values of A061035.

Examples

			The triangle starts in column n=1, rows 0<=m<n as
0;
0,-3;
0,-5,-8;
0,-7,-3,-15;
0,-9,-16,-21,-24;
		

Extensions

Comments compactified with reference to A172370, formula and example added - R. J. Mathar, Nov 23 2010

A225233 Triangle read by rows: T(n, k) = (2*n + 2 - k)*k, for 0 <= k <= n.

Original entry on oeis.org

0, 0, 3, 0, 5, 8, 0, 7, 12, 15, 0, 9, 16, 21, 24, 0, 11, 20, 27, 32, 35, 0, 13, 24, 33, 40, 45, 48, 0, 15, 28, 39, 48, 55, 60, 63, 0, 17, 32, 45, 56, 65, 72, 77, 80, 0, 19, 36, 51, 64, 75, 84, 91, 96, 99, 0, 21, 40, 57, 72, 85, 96, 105, 112, 117, 120, 0, 23, 44, 63, 80, 95, 108, 119, 128, 135, 140, 143, 0, 25
Offset: 0

Views

Author

R. J. Mathar, May 03 2013

Keywords

Comments

The entries of a row n appear on the diagonal of a square array of dimension n + 1 while filling it with numbers from 0 to n^2 - 1 first along top row and left column, then along 2nd row and 2nd column, 3rd row and 3rd column etc. up to the (single) entry in the n-th row and n-th column. [This may be the preferred order if a set of matrices M is built with requirements on the product M*M.] This vaguely is an alternative to the boustrophedonic re-arrangement of a finite array.
The triangle may also be generated by reading half of each second antidiagonal of the array A003991.
The numbers appear in reverse order as the numerators in the triangle A061035 before they are reduced with the denominators by cancellation of common factors. - Paul Curtz, May 03 2013

Examples

			Triangle starts:
[0] 0;
[1] 0,  3;
[2] 0,  5,  8;
[3] 0,  7, 12, 15;
[4] 0,  9, 16, 21, 24;
[5] 0, 11, 20, 27, 32, 35;
[6] 0, 13, 24, 33, 40, 45, 48;
[7] 0, 15, 28, 39, 48, 55, 60, 63;
[8] 0, 17, 32, 45, 56, 65, 72, 77, 80;
[9] 0, 19, 36, 51, 64, 75, 84, 91, 96, 99.
.
The row n = 3, for example, is created by reading the 4 X 4 square array downwards its main diagonal.
0,  1,  3,  5;
2,  7,  8, 10;
4,  9, 12, 13;
6, 11, 14, 15;
		

Crossrefs

Cf. A016061 (row sums), A045944 (central), A005563 (main diagonal).
Cf. A005408 (column k=2), A008586 (column k=3), A016945 (column k=4).

Programs

  • Maple
    T := proc(n, k) option remember; if k = 0 then 0 elif k = 1 then 2*n+1 else
    T(n, k-1) + T(n-k+1, 1) fi end:
    for n from 0 to 9 do seq(T(n, k), k=0..n) od; # Peter Luschny, Jun 02 2021

Extensions

Offset set to 0 and edited by Peter Luschny, Jun 02 2021
Previous Showing 11-17 of 17 results.