A172370
Mirrored triangle A120072 read by rows.
Original entry on oeis.org
3, 5, 8, 7, 3, 15, 9, 16, 21, 24, 11, 5, 1, 2, 35, 13, 24, 33, 40, 45, 48, 15, 7, 39, 3, 55, 15, 63, 17, 32, 5, 56, 65, 8, 77, 80, 19, 9, 51, 4, 3, 21, 91, 6, 99, 21, 40, 57, 72, 85, 96, 105, 112, 117, 120, 23, 11, 7, 5, 95, 1, 119, 1, 5, 35, 143, 25, 48, 69, 88, 105, 120, 133, 144
Offset: 2
The table starts
3
5 8
7 3 15
9 16 21 24
11 5 1 2 35
13 24 33 40 45 48
15 7 39 3 55 15 63
17 32 5 56 65 8 77 80
19 9 51 4 3 21 91 6 99
-
[[Numerator(1/(n-k)^2 -1/n^2): k in [1..n-1]]: n in [2..20]]; // G. C. Greubel, Sep 20 2018
-
Table[Numerator[1/(n-k)^2 -1/n^2], {n, 2, 20}, {k, 1, n-1}]//Flatten (* G. C. Greubel, Sep 20 2018 *)
-
for(n=2,20, for(k=1,n-1, print1(numerator(1/(n-k)^2 -1/n^2), ", "))) \\ G. C. Greubel, Sep 20 2018
Comment rewritten and offset set to 2 by
R. J. Mathar, Nov 23 2010
A061048
Denominator of 1/49 - 1/n^2.
Original entry on oeis.org
1, 3136, 3969, 4900, 5929, 7056, 8281, 196, 11025, 12544, 14161, 15876, 17689, 19600, 441, 23716, 25921, 28224, 30625, 33124, 35721, 784, 41209, 44100, 47089, 50176, 53361, 56644, 1225, 63504, 67081, 70756, 74529, 78400, 82369
Offset: 7
-
Table[Denominator[1/7^2 - 1/n^2], {n, 7, 50}] (* G. C. Greubel, Jul 07 2017 *)
-
for(n=7,50, print1(denominator(1/7^2 - 1/n^2), ", ")) \\ G. C. Greubel, Jul 07 2017
A174233
Triangle T(n,k) read by rows: the numerator of 1/n^2 - 1/(k-n)^2, 0 <= k < 2n.
Original entry on oeis.org
0, -1, 0, -3, -1, -3, 0, -5, -8, -1, -8, -5, 0, -7, -3, -15, -1, -15, -3, -7, 0, -9, -16, -21, -24, -1, -24, -21, -16, -9, 0, -11, -5, -1, -2, -35, -1, -35, -2, -1, -5, -11, 0, -13, -24, -33, -40, -45, -48, -1, -48, -45, -40, -33, -24, -13, 0, -15, -7, -39, -3, -55, -15, -63
Offset: 1
The triangle starts
0, -1;
0, -3, -1, -3;
0, -5, -8, -1, -8, -5;
0, -7, -3, -15, -1, -15, -3, -7;
0, -9, -16, -21, -24, -1, -24, -21, -16, -9;
0, -11, -5, -1, -2, -35, -1, -35, -2, -1, -5, -11;
0, -13, -24, -33, -40, -45, -48, -1, -48, -45, -40, -33, -24, -13;
-
A173233 := proc(n,k) if k = n then -1 ; else 1/n^2-1/(k-n)^2 ; numer(%) ; end if; end proc: # R. J. Mathar, Jan 06 2011
-
T[n_, n_] := -1; T[n_, k_] := 1/n^2 - 1/(k - n)^2; Table[Numerator[T[n, k]], {n, 1, 20}, {k, 0, 2 n - 1}]//Flatten (* G. C. Greubel, Sep 19 2018 *)
A061036
Triangle T(m,n) = denominator of 1/m^2 - 1/n^2, n >= 1, m=n,n-1,n-2,...,1.
Original entry on oeis.org
1, 1, 4, 1, 36, 9, 1, 144, 16, 16, 1, 400, 225, 100, 25, 1, 900, 144, 12, 9, 36, 1, 1764, 1225, 784, 441, 196, 49, 1, 3136, 576, 1600, 64, 576, 64, 64, 1, 5184, 3969, 324, 2025, 1296, 81, 324, 81, 1, 8100, 1600, 4900, 225, 100, 400, 900, 25, 100, 1, 12100, 9801
Offset: 1
Triangle 1/m^2-1/n^2, m >= 1, 1<=n<=m, (i.e. with rows reversed) begins
0
3/4, 0
8/9, 5/36, 0
15/16, 3/16, 7/144, 0
24/25, 21/100, 16/225, 9/400, 0
35/36, 2/9, 1/12, 5/144, 11/900, 0
- J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 77.
-
import Data.Ratio ((%), denominator)
a061036 n k = a061036_tabl !! (n-1) !! (k-1)
a061036_row = map denominator . balmer where
balmer n = map (subtract (1 % n ^ 2) . (1 %) . (^ 2)) [n, n-1 .. 1]
a061036_tabl = map a061036_row [1..]
-- Reinhard Zumkeller, Apr 12 2012
-
t[m_, n_] := Denominator[1/m^2 - 1/n^2]; Table[t[m, n], {n, 1, 12}, {m, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 17 2012 *)
A175779
Triangle T(n,m) read by rows: numerator of 1/(n-m)^2 - 1/n^2.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 5, 8, 1, 0, 7, 3, 15, 1, 0, 9, 16, 21, 24, 1, 0, 11, 5, 1, 2, 35, 1, 0, 13, 24, 33, 40, 45, 48, 1, 0, 15, 7, 39, 3, 55, 15, 63, 1, 0, 17, 32, 5, 56, 65, 8, 77, 80
Offset: 0
The triangle starts in row n=0 with columns 0<=m<=n as:
.1.
.0..1.
.0..3..1.
.0..5..8..1.
.0..7..3.15..1.
.0..9.16.21.24..1.
.0.11..5..1..2.35..1.
.0.13.24.33.40.45.48..1.
.0.15..7.39..3.55.15.63..1.
.0.17.32..5.56.65..8.77.80..1.
.0.19..9.51..4..3.21.91..6.99..1.
-
T[n_, n_] := 1; T[n_, k_] := 1/(n - k)^2 - 1/n^2; Table[Numerator[T[n, k]], {n, 0, 20}, {k, 0, n}] // Flatten (* G. C. Greubel, Sep 19 2018 *)
A174190
Triangle T(n,m) = numerator of 1/n^2-1/(n-m)^2, read by rows.
Original entry on oeis.org
0, 0, -3, 0, -5, -8, 0, -7, -3, -15, 0, -9, -16, -21, -24, 0, -11, -5, -1, -2, -35, 0, -13, -24, -33, -40, -45, -48, 0, -15, -7, -39, -3, -55, -15, -63, 0, -17, -32, -5, -56, -65, -8, -77, -80, 0, -19, -9, -51, -4, -3, -21, -91, -6, -99, 0, -21, -40, -57, -72, -85, -96
Offset: 1
The triangle starts in column n=1, rows 0<=m<n as
0;
0,-3;
0,-5,-8;
0,-7,-3,-15;
0,-9,-16,-21,-24;
Comments compactified with reference to
A172370, formula and example added -
R. J. Mathar, Nov 23 2010
A225233
Triangle read by rows: T(n, k) = (2*n + 2 - k)*k, for 0 <= k <= n.
Original entry on oeis.org
0, 0, 3, 0, 5, 8, 0, 7, 12, 15, 0, 9, 16, 21, 24, 0, 11, 20, 27, 32, 35, 0, 13, 24, 33, 40, 45, 48, 0, 15, 28, 39, 48, 55, 60, 63, 0, 17, 32, 45, 56, 65, 72, 77, 80, 0, 19, 36, 51, 64, 75, 84, 91, 96, 99, 0, 21, 40, 57, 72, 85, 96, 105, 112, 117, 120, 0, 23, 44, 63, 80, 95, 108, 119, 128, 135, 140, 143, 0, 25
Offset: 0
Triangle starts:
[0] 0;
[1] 0, 3;
[2] 0, 5, 8;
[3] 0, 7, 12, 15;
[4] 0, 9, 16, 21, 24;
[5] 0, 11, 20, 27, 32, 35;
[6] 0, 13, 24, 33, 40, 45, 48;
[7] 0, 15, 28, 39, 48, 55, 60, 63;
[8] 0, 17, 32, 45, 56, 65, 72, 77, 80;
[9] 0, 19, 36, 51, 64, 75, 84, 91, 96, 99.
.
The row n = 3, for example, is created by reading the 4 X 4 square array downwards its main diagonal.
0, 1, 3, 5;
2, 7, 8, 10;
4, 9, 12, 13;
6, 11, 14, 15;
-
T := proc(n, k) option remember; if k = 0 then 0 elif k = 1 then 2*n+1 else
T(n, k-1) + T(n-k+1, 1) fi end:
for n from 0 to 9 do seq(T(n, k), k=0..n) od; # Peter Luschny, Jun 02 2021
Comments