A261327
a(n) = (n^2 + 4) / 4^((n + 1) mod 2).
Original entry on oeis.org
1, 5, 2, 13, 5, 29, 10, 53, 17, 85, 26, 125, 37, 173, 50, 229, 65, 293, 82, 365, 101, 445, 122, 533, 145, 629, 170, 733, 197, 845, 226, 965, 257, 1093, 290, 1229, 325, 1373, 362, 1525, 401, 1685, 442, 1853, 485, 2029, 530, 2213, 577, 2405, 626, 2605, 677
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Diogo Queiros-Condé, Jean Chaline, and Jacques Dubois, Le monde des fractales La Nature trans-échelles, 478p., ellipses, Paris, 2015, page 220.
- T. A. Witten, Jr. and L. M. Sander, Diffusion-Limited Aggregation, a Kinetic Critical Phenomenom, Phys. Rev. Lett., Vol. 47 (Nov 09 1981), pp. 1400-1403.
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Cf.
A000007,
A000290,
A001622,
A002522,
A005563,
A010685,
A010698,
A013946,
A014176,
A057427,
A061035-
A061050,
A078370,
A087475,
A090771,
A098316,
A098317,
A098318,
A144433,
A168077,
A171621,
A176398,
A176439,
A176458,
A176522,
A176537,
A195161.
-
[Numerator(1+n^2/4): n in [0..60]]; // Vincenzo Librandi, Aug 15 2015
-
A261327:=n->numer((4 + n^2)/4); seq(A261327(n), n=0..60); # Wesley Ivan Hurt, Aug 15 2015
-
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 60] (* Vincenzo Librandi, Aug 15 2015 *)
a[n_] := (n^2 + 4) / 4^Mod[n + 1, 2]; Table[a[n], {n, 0, 52}] (* Peter Luschny, Mar 18 2022 *)
-
vector(60, n, n--; numerator(1+n^2/4)) \\ Michel Marcus, Aug 15 2015
-
Vec((1+5*x-x^2-2*x^3+2*x^4+5*x^5)/(1-x^2)^3 + O(x^60)) \\ Colin Barker, Aug 15 2015
-
a(n)=if(n%2,n^2+4,(n/2)^2+1) \\ Charles R Greathouse IV, Oct 16 2015
-
[(n*n+4)//4**((n+1)%2) for n in range(60)] # Gennady Eremin, Mar 18 2022
-
[numerator(1+n^2/4) for n in (0..60)] # G. C. Greubel, Feb 09 2019
A171522
Denominator of 1/n^2-1/(n+2)^2.
Original entry on oeis.org
0, 9, 16, 225, 144, 1225, 576, 3969, 1600, 9801, 3600, 20449, 7056, 38025, 12544, 65025, 20736, 104329, 32400, 159201, 48400, 233289, 69696, 330625, 97344, 455625, 132496, 613089, 176400, 808201, 230400, 1046529, 295936, 1334025, 374544, 1677025, 467856
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,5,0,-10,0,10,0,-5,0,1).
-
A171522 := proc(n) if n = 0 then 0 else lcm(n+2,n) ; %^2 ; end if ; end:
seq(A171522(n),n=0..70) ; # R. J. Mathar, Dec 15 2009
-
a[n_] := If[EvenQ[n], (n*(n+2))^2/4, (n*(n+2))^2]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Jun 13 2017 *)
-
concat(0, Vec(x*(x^8+4*x^6+16*x^5+190*x^4+64*x^3+180*x^2+16*x+9) / ((x-1)^5*-(x+1)^5) + O(x^100))) \\ Colin Barker, Nov 05 2014
A165441
Table T(k,n) read by antidiagonals: denominator of 1/min(n,k)^2 -1/max(n,k)^2.
Original entry on oeis.org
1, 4, 4, 9, 1, 9, 16, 36, 36, 16, 25, 16, 1, 16, 25, 36, 100, 144, 144, 100, 36, 49, 9, 225, 1, 225, 9, 49, 64, 196, 12, 400, 400, 12, 196, 64, 81, 64, 441, 144, 1, 144, 441, 64, 81, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 121, 25, 81, 64, 1225, 1, 1225, 64, 81, 25, 121
Offset: 1
.1, 4, 9, 16, 25, 36, 49, 64, 81, ... A000290
.4, 1, 36, 16, 100, 9, 196, 64, 324, ... A061038
.9, 36, 1, 144, 225, 12, 441, 576, 81, ... A061040
16, 16, 144, 1, 400, 144, 784, 64, 1296, ... A061042
25, 100, 225, 400, 1, 900, 1225, 1600, 2025, ... A061044
36, 9, 12, 144, 900, 1, 1764, 576, 324, ... A061046
49, 196, 441, 784, 1225, 1764, 1, 3136, 3969, ... A061048
64, 64, 576, 64, 1600, 576, 3136, 1, 5184, ... A061050
81, 324, 81, 1296, 2025, 324, 3969, 5184, 1, ...
-
T:= (k,n)-> denom(1/min (n,k)^2 -1/max (n, k)^2):
seq(seq(T(k, d-k), k=1..d-1), d=2..12);
-
T[n_, k_] := Denominator[1/Min[n, k]^2 - 1/Max[n, k]^2];
Table[T[n-k, k], {n, 2, 12}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 04 2020 *)
A165727
Table T(k,n) read by antidiagonals: denominator of 1/min(n,k)^2 -1/max(n,k)^2 with T(0,n) = T(k,0) = 0.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 4, 4, 0, 0, 9, 1, 9, 0, 0, 16, 36, 36, 16, 0, 0, 25, 16, 1, 16, 25, 0, 0, 36, 100, 144, 144, 100, 36, 0, 0, 49, 9, 225, 1, 225, 9, 49, 0, 0, 64, 196, 12, 400, 400, 12, 196, 64, 0, 0, 81, 64, 441, 144, 1, 144, 441, 64, 81, 0, 0, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 0
Offset: 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... A000004
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, ... A000290
0, 4, 1, 36, 16, 100, 9, 196, 64, 324, ... A061038
0, 9, 36, 1, 144, 225, 12, 441, 576, 81, ... A061040
0, 16, 16, 144, 1, 400, 144, 784, 64, 1296, ... A061042
0, 25, 100, 225, 400, 1, 900, 1225, 1600, 2025, ... A061044
0, 36, 9, 12, 144, 900, 1, 1764, 576, 324, ... A061046
0, 49, 196, 441, 784, 1225, 1764, 1, 3136, 3969, ... A061048
0, 64, 64, 576, 64, 1600, 576, 3136, 1, 5184, ... A061050
0, 81, 324, 81, 1296, 2025, 324, 3969, 5184, 1, ...
Cf.
A165441 (top row and left column removed)
-
T:= (k,n)-> `if` (n=0 or k=0, 0, denom (1/min (n,k)^2 -1/max (n, k)^2)):
seq (seq (T (k, d-k), k=0..d), d=0..11);
A152018
Denominator of 1/n^2-1/(3n)^2 or of 8/(9n^2).
Original entry on oeis.org
9, 9, 81, 18, 225, 81, 441, 72, 729, 225, 1089, 162, 1521, 441, 2025, 288, 2601, 729, 3249, 450, 3969, 1089, 4761, 648, 5625, 1521, 6561, 882, 7569, 2025, 8649, 1152, 9801, 2601, 11025, 1458, 12321, 3249, 13689, 1800, 15129, 3969, 16641, 2178, 18225
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1).
Cf.
A143025 with a similar principle of construction.
Stratified definition, corrected indices, extended,
R. J. Mathar, Dec 10 2008
Showing 1-5 of 5 results.
Comments