cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-49 of 49 results.

A280609 Odd prime powers with prime exponents.

Original entry on oeis.org

9, 25, 27, 49, 121, 125, 169, 243, 289, 343, 361, 529, 841, 961, 1331, 1369, 1681, 1849, 2187, 2197, 2209, 2809, 3125, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6859, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 16129, 16807, 17161, 18769, 19321, 22201, 22801, 24389, 24649, 26569, 27889, 29791, 29929
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 06 2017

Keywords

Comments

Intersection of A053810 and A061345.

Examples

			9 is in the sequence because 9 = 3^2;
25 is in the sequence because 25 = 5^2;
27 is in the sequence because 27 = 3^3, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[30000], PrimePowerQ[#1] && PrimeQ[PrimeOmega[#1]] && Mod[#1, 2] == 1 & ]
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A280609(n):
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x, p)[0])-1 for p in primerange(x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024

Formula

a(n) = p^q, where p, q are primes and p > 2.
Sum_{n>=1} 1/a(n) = Sum_{p prime} P(p) - A051006 = 0.25699271237062131298..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 13 2024

A284233 Sum of odd prime power divisors of n (not including 1).

Original entry on oeis.org

0, 0, 3, 0, 5, 3, 7, 0, 12, 5, 11, 3, 13, 7, 8, 0, 17, 12, 19, 5, 10, 11, 23, 3, 30, 13, 39, 7, 29, 8, 31, 0, 14, 17, 12, 12, 37, 19, 16, 5, 41, 10, 43, 11, 17, 23, 47, 3, 56, 30, 20, 13, 53, 39, 16, 7, 22, 29, 59, 8, 61, 31, 19, 0, 18, 14, 67, 17, 26, 12, 71, 12, 73, 37, 33, 19, 18, 16, 79, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 23 2017

Keywords

Examples

			a(15) = 8 because 15 has 4 divisors {1, 3, 5, 15} among which 2 are odd prime powers {3, 5} therefore 3 + 5 = 8.
		

Crossrefs

Cf. A000961, A005069, A023888, A023889, A038712, A061345, A065091 (fixed points), A087436 (number of odd prime power divisors of n), A206787, A246655, A284117.

Programs

  • Mathematica
    nmax = 80; Rest[CoefficientList[Series[Sum[Boole[PrimePowerQ[k] && Mod[k, 2] == 1] k x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Total[Select[Divisors[n], PrimePowerQ[#] && Mod[#, 2] == 1 &]], {n, 80}]
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; f[2, e_] := 0; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)

Formula

G.f.: Sum_{k>=1} A061345(k)*x^A061345(k)/(1 - x^A061345(k)).
a(n) = Sum_{d|n, d = p^k, p prime, p > 2, k > 0} d.
a(p^k) = p*(p^k - 1)/(p - 1) for p is a prime > 2.
a(2^k*p) = p for p is a prime > 2.
a(2^k) = 0.
Additive with a(2^e) = 0, and a(p^e) = (p^(e+1)-1)/(p-1) - 1 for an odd prime p. - Amiram Eldar, Jul 24 2024

A352165 Number of partitions of n into odd prime powers (1 included).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 26, 31, 37, 44, 52, 61, 71, 83, 97, 112, 130, 150, 173, 199, 228, 261, 298, 340, 386, 439, 497, 563, 637, 718, 809, 910, 1023, 1147, 1286, 1439, 1608, 1796, 2003, 2231, 2483, 2761, 3065, 3401, 3770, 4175, 4619
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[Product[1/(1 - Boole[(PrimePowerQ[k] || k == 1) && OddQ[k]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} 1 / (1 - x^A061345(k)).

A352166 Number of partitions of n into distinct odd prime powers (1 included).

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 5, 4, 5, 6, 6, 6, 7, 8, 9, 9, 10, 12, 12, 13, 14, 16, 17, 17, 19, 21, 23, 23, 25, 28, 30, 31, 33, 37, 38, 40, 43, 47, 50, 52, 55, 60, 64, 66, 70, 76, 81, 83, 89, 96, 101, 105, 110, 119, 125, 130, 138, 147, 155, 161
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Product[(1 + Boole[(PrimePowerQ[k] || k == 1) && OddQ[k]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} (1 + x^A061345(k)).

A369690 a(n) = max(A119288(n), A053669(n)).

Original entry on oeis.org

2, 3, 2, 3, 2, 5, 2, 3, 2, 5, 2, 5, 2, 7, 5, 3, 2, 5, 2, 5, 7, 11, 2, 5, 2, 13, 2, 7, 2, 7, 2, 3, 11, 17, 7, 5, 2, 19, 13, 5, 2, 5, 2, 11, 5, 23, 2, 5, 2, 5, 17, 13, 2, 5, 11, 7, 19, 29, 2, 7, 2, 31, 7, 3, 13, 5, 2, 17, 23, 5, 2, 5, 2, 37, 5, 19, 11, 5, 2, 5, 2
Offset: 1

Views

Author

Peter Munn and Michael De Vlieger, Feb 18 2024

Keywords

Comments

Equivalently, a(n) is the largest p such that p is the 2nd smallest prime dividing n or the smallest prime not dividing n.
If squarefree n is such that a(n) = p, then a(k) = p for k in the infinite sequence { k = m*n : rad(m) | n }. Consequence of the fact that both A119288(n) and A053669(n) do not depend on multiplicity of prime divisors p | n.

Examples

			Let p be the second least prime factor of n or 1 if n is a prime power, and let q be the smallest prime that does not divide n.
a(1) = 2 since max(p, q) = max(1, 2) = 2.
a(2) = 3 since max(p, q) = max(1, 3) = 3.
a(4) = 3 since max(p, q) = max(1, 3) = 3.
a(6) = 5 since max(p, q) = max(3, 5) = 5.
a(9) = 2 since max(p, q) = max(1, 2) = 2.
a(15) = 5 since max(p, q) = max(5, 2) = 5.
a(36) = 5 since max(p, q) = max(3, 5) = 5.
Generally,
a(n) = 2 for n in A061345 = union of {1} and sequences { m*p : prime p > 2, rad(m) | p }.
a(n) = 3 for n in A000079 = { 2*m : rad(m) | 2 }.
a(n) = 5 for k in { k = m*d : rad(m) | d, d in {6, 10, 15} }.
a(n) = 7 for k in { k = m*d : rad(m) | d, d in {14, 21, 30, 35} }.
a(n) = 11 for k in { k = m*d : rad(m) | d, d in {22, 33, 55, 77, 210} }, etc.
		

Crossrefs

Cf. A000079, A002110, A003557, A007947, A024619, A053669, A061345, A096015 (smallest instead of 2nd smallest), A100484, A119288, A246547, A361098.

Programs

  • Mathematica
    {2}~Join~Array[If[PrimePowerQ[#],
      q = 2; While[Divisible[#, q], q = NextPrime[q]]; q,
      q = 2; While[Divisible[#, q], q = NextPrime[q]];
        Max[FactorInteger[#][[2, 1]], q]] &, 120, 2]

Formula

a(n) <= A003557(n) for n > 4 in A246547 and for n in A361098.
Numbers n that set records include 1, 2, and squarefree semiprimes, i.e., (A100484 \ {4}) U {1, 2}.

A380757 Powers of primes that have a primitive root.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229
Offset: 1

Views

Author

Michael De Vlieger, Feb 01 2025

Keywords

Comments

Proper subset of A033948.
A046022 is a proper subset of this sequence.

Crossrefs

Programs

  • Mathematica
    With[{nn = 2^8},
      Complement[#, Array[2^# &, Floor@ Log2[#[[-1]]] + 2, 3]] &@
      Union[{1}, Prime@ Range@ PrimePi[#[[-1]] ], #] &@
      Select[Union@ Flatten@
        Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[nn/b^3]}],
        PrimePowerQ] ]
  • Python
    from sympy import primepi, integer_nthroot
    def A380757(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n if x<6 else int(n+x-3-sum(primepi(integer_nthroot(x,k)[0])-1 for k in range(1,x.bit_length())))
        return bisection(f,n,n) # Chai Wah Wu, Feb 03 2025

Formula

Union of {1, 2, 4} and A061345.
This sequence is A000961 without A000079(k) for k > 2.
A033948 = union of {a(n)} and {2*a(n)} without 8 = union of {a(n)} and A278568, where {a(n)} represents this sequence.
Intersection of A000961 and A033948.
Define c(m) to be the number of terms that do not exceed m. Then for m >= 4, c(m) = 3 + (Sum_{k = 1..floor(log_2(m))} pi(floor(m^(1/k)))) - floor(log_2(m)) = 3 + A065515(m) - A113473(m).

A327247 Number of odd prime powers <= n (with exponents > 0).

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 24, 24, 24
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 14 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Boole[OddQ[k] && PrimePowerQ[k]], {k, 1, n}], {n, 1, 75}]
  • PARI
    a(n) = {sum(k=2, primepi(n), logint(n, prime(k)))} \\ Andrew Howroyd, Sep 14 2019

Formula

a(n) = A025528(n) - A000523(n).

A360204 Primitive prime powers. p is a primitive prime power iff it is an odd prime power that exceeds the preceding odd prime power by more than any smaller odd prime power does. ('Prime power' defined in the sense of A246655.)

Original entry on oeis.org

5, 17, 37, 97, 149, 211, 307, 907, 1151, 1361, 5623, 8501, 9587, 15727, 19661, 31469, 156007, 360749, 370373, 492227, 1349651, 1357333, 2010881, 4652507, 17051887, 20831533, 47326913, 122164969, 189695893, 191913031, 387096383, 436273291, 1294268779
Offset: 1

Views

Author

Peter Luschny, Feb 01 2023

Keywords

Comments

Conjecture: Primitive prime powers are primes.

Examples

			The first few terms of the sequence are the minuends in the following differences. The differences are strictly increasing by definition.
  5 -   3 = 2;
 17 -  13 = 4;
 37 -  31 = 6;
 97 -  89 = 8;
149 - 139 = 10;
211 - 199 = 12;
307 - 293 = 14;
907 - 887 = 20.
The example above might suggest the subtrahends are also prime. In general they are not, as the example a(10) shows, where 1361 - 1331 = 30, but 1331 is not prime. - _Ivan N. Ianakiev_, Feb 02 2023
		

Crossrefs

Programs

  • Mathematica
    a[1] = 5; candidates[n_] := Select[Range[NextPrime[n, -1], n], OddQ[#] && PrimePowerQ[#]&];
    difference[n_] := candidates[n][[-1]] - candidates[n][[-2]];
    a[n_] := a[n] = Module[{k = a[n-1]+2}, While[OddQ[k] && !PrimePowerQ[k] || difference[k] <= difference[a[n-1]], k = k+2]; k];
    a/@Range[16] (* Ivan N. Ianakiev, Feb 02 2023 *)
  • SageMath
    def A360204_list(n):
        R = []; L = 3; MAX = 1
        for C in xsrange(3, n, 2):
            if C.is_prime_power():
                if C - L > MAX:
                    MAX = C - L
                    R.append(C)
                L = C
        return R
    print(A360204_list(6000))

A386894 Markoff numbers that are powers of one odd prime or twice powers of one odd prime.

Original entry on oeis.org

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 1597, 2897, 5741, 7561, 28657, 33461, 43261, 96557, 426389, 514229, 646018, 1686049, 2012674, 2922509, 3276509, 11485154, 21531778, 94418953, 253191266, 321534781, 433494437, 780291637, 1405695061, 1475706146, 2971215073, 6684339842, 19577194573
Offset: 1

Views

Author

Wolfdieter Lang, Aug 07 2025

Keywords

Comments

A subsequence of A000961 without numbers divisible by 4.
The powers of odd primes are given in A061345 (with offset 0).
These Markoff numbers (see A002559) have been proved to obey the Frobenius-Markoff uniqueness conjecture. See Aigner, Corollary 3.20, p. 59, and there the references [4] A. Baragar, [18] J. O. Button, and [119] Ying Zhang.

Examples

			26 = 2*13 is not a Markoff number, hence not in the present sequence.
610 = 2*5*61 is a Markoff number but not a prime power nor is 305 a prime power.
		

References

  • Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013.

Crossrefs

Programs

  • Mathematica
    MAX=10^11; data=NestWhile[Select[Union[Sort/@Flatten[Table[{a, b, 3a b -c}/.MapThread[Rule, {{a, b, c}, #}]&/@Map[RotateLeft[ii, #]&, Range[3]], {ii, #}], 1]], Max[#]James C. McMahon, Aug 12 2025 *)
  • SageMath
    def A386894List(len: int = 50, MAX: int = 10**10) -> list[int]:
        # Using function 'MarkovNumbers' from A002559.
        M = MarkovNumbers(len, MAX)
        U = set([1])
        for m in M:  # if m is a Markov number and ...
            z = ZZ(m)
            if is_prime_power(z) or (is_even(z) and is_prime_power(z//2)):
                U.add(m)
        return sorted(U)
    # Balance required sequence length and search depth.
    print(A386894List(len=120, MAX=10**12))  # Peter Luschny, Aug 12 2025

Formula

Markoff numbers of the form 2^j*p^k, with an odd prime p, j = 0 or 1, and k >= 0, ordered strictly increasing.
Previous Showing 41-49 of 49 results.