cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 80 results. Next

A176995 Numbers that can be written as (m + sum of digits of m) for some m.

Original entry on oeis.org

2, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 21 2011

Keywords

Comments

The asymptotic density of this sequence is approximately 0.9022222 (Guaraldo, 1978). - Amiram Eldar, Nov 22 2020

Examples

			a(5) = 10 = 5 + (5);
a(87) = 100 = 86 + (8+6);
a(898) = 1000 = 977 + (9+7+7);
a(9017) = 10000 = 9968 + (9+9+6+8).
		

References

  • V. S. Joshi, A note on self-numbers. Volume dedicated to the memory of V. Ramaswami Aiyar, Math. Student, Vol. 39 (1971), pp. 327-328. MR0330032 (48 #8371).

Crossrefs

Complement of A003052, range of A062028.

Programs

  • Haskell
    a176995 n = a176995_list !! (n-1)
    a176995_list = filter ((> 0) . a230093) [1..]
    -- Reinhard Zumkeller, Oct 11 2013, Aug 21 2011
    
  • Mathematica
    Select[Union[Table[n + Total[IntegerDigits[n]], {n, 77}]], # <= 77 &] (* Jayanta Basu, Jul 27 2013 *)
  • PARI
    is_A003052(n)={for(i=1, min(n\2, 9*#digits(n)), sumdigits(n-i)==i && return); n} \\ from A003052
    isok(n) = ! is_A003052(n) \\ Michel Marcus, Aug 20 2020

Formula

A230093(a(n)) > 0. - Reinhard Zumkeller, Oct 11 2013

A006378 Prime self (or Colombian) numbers: primes not expressible as the sum of an integer and its digit sum.

Original entry on oeis.org

3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389, 457, 479, 547, 569, 613, 659, 727, 839, 883, 929, 1021, 1087, 1109, 1223, 1289, 1447, 1559, 1627, 1693, 1783, 1873, 2099, 2213, 2347, 2437, 2459, 2503, 2549, 2593, 2617, 2683, 2729, 2819, 2953, 3023, 3067
Offset: 1

Views

Author

Keywords

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 116.
  • D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately Printed, 311 Devlali Camp, Devlali, India, 1963.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers (Part V). 311 Devlali Camp, Devlali, India, 1967.
  • Jeffrey Shallit, personal communication c. 1999.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006378 n = a006378_list !! (n-1)
    a006378_list = map a000040 $ filter ((== 0) . a107740) [1..]
    -- Reinhard Zumkeller, Sep 27 2014
    
  • Mathematica
    With[{nn=3200},Complement[Prime[Range[PrimePi[nn]]],Table[n+Total[ IntegerDigits[n]],{n,nn}]]] (* Harvey P. Dale, Dec 30 2011 *)
  • PARI
    select( is_A006378(n)=is_A003052(n)&&isprime(n), primes([1,3000])) \\ M. F. Hasler, Nov 08 2018

Formula

A107740(A049084(a(n))) = 0. [Corrected by Reinhard Zumkeller, Sep 27 2014]

A006507 a(n+1) = a(n) + sum of digits of a(n), with a(1)=7.

Original entry on oeis.org

7, 14, 19, 29, 40, 44, 52, 59, 73, 83, 94, 107, 115, 122, 127, 137, 148, 161, 169, 185, 199, 218, 229, 242, 250, 257, 271, 281, 292, 305, 313, 320, 325, 335, 346, 359, 376, 392, 406, 416, 427, 440, 448, 464, 478, 497, 517, 530, 538, 554, 568
Offset: 1

Views

Author

Keywords

Comments

a(n) = A004207(n+4) for n > 11. - Reinhard Zumkeller, Oct 14 2013

References

  • Editorial Note, Popular Computing (Calabasas, CA), Vol. 4 (No. 37, Apr 1976), p. 12.
  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 36.
  • D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately Printed, 311 Devlali Camp, Devlali, India, 1963.
  • Jeffrey Shallit, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006507 n = a006507_list !! (n-1)
    a006507_list = iterate a062028 7  -- Reinhard Zumkeller, Oct 14 2013
  • Mathematica
    NestList[#+Total[IntegerDigits[#]]&,7,50] (* Harvey P. Dale, Jan 25 2021 *)

Formula

a(n) = A062028(a(n-1)) for n > 1. - Reinhard Zumkeller, Oct 14 2013

Extensions

More terms from Robert G. Wilson v

A006064 Smallest junction number with n generators.

Original entry on oeis.org

0, 101, 10000000000001, 1000000000000000000000102
Offset: 1

Views

Author

Keywords

Comments

Strictly speaking, a junction number is a number n with more than one solution to x+digitsum(x) = n. However, it seems best to start this sequence with n=0, for which there is just one solution, x=0. - N. J. A. Sloane, Oct 31 2013.
a(3) = 10^13 + 1 was found by Narasinga Rao, who reports that Kaprekar verified that it is the smallest term. No details of Kaprekar's proof were given.
a(4) = 10^24 + 102 was conjectured by Narasinga Rao.
a(5) = 10^1111111111124 + 102. - Conjectured by Narasinga Rao, confirmed by Max Alekseyev and N. J. A. Sloane.
a(6) = 10^2222222222224 + 10000000000002. - Max Alekseyev
a(7) = 10^( (10^24 + 10^13 + 115) / 9 ) + 10^13 + 2. - Max Alekseyev
a(8) = 10^( (2*10^24 + 214)/9 ) + 10^24 + 103. - Max Alekseyev

Examples

			a(2) = 101 since 101 is the smallest number with two generators: 101 = A062028(91) = A062028(100).
a(4) = 10^24 + 102 = 1000000000000000000000102 has exactly four inverses w.r.t. A062028, namely 999999999999999999999893, 999999999999999999999902, 1000000000000000000000091 and 1000000000000000000000100.
		

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 116.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately printed, 311 Devlali Camp, Devlali, India, 1963.
  • Narasinga Rao, A. On a technique for obtaining numbers with a multiplicity of generators. Math. Student 34 1966 79--84 (1967). MR0229573 (37 #5147)
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003052, A230093, A230100, A230303, A230857 (highest power of 10).
Smallest number m such that u + (sum of base-b digits of u) = m has exactly n solutions, for bases 2 through 10: A230303, A230640, A230638, A230867, A238840, A238841, A238842, A238843, A006064.

Formula

a(n) = the smallest m such that there are exactly n solutions to A062028(x)=m.

Extensions

Edited, a(5)-a(6) added by Max Alekseyev, Jun 01 2011
a(1) added, a(5) corrected, a(7)-a(8) added by Max Alekseyev, Oct 26 2013

A107740 Number of numbers m such that prime(n) = m + (digit sum of m).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 23 2005

Keywords

Comments

a(A049084(A006378(n))) = 0; a(A049084(A048521(n))) > 0. [Corrected by Reinhard Zumkeller, Sep 27 2014]
a(n) <= 2 for n <= 10^5. Conjecture: sequence is bounded.
I would rather conjecture the opposite. Of course a(n) >= m implies n >= A006064(m), having more than A230857(m) digits, i.e., 14, 25 and 1111111111125 digits of n, for a(n) = 3, 4, 5. - M. F. Hasler, Nov 09 2018

Examples

			A000040(26) = 101 = 91 + (9 + 1) = 100 + (1 + 0 + 0): a(26) = # {91, 100} = 2.
		

Crossrefs

Programs

  • Haskell
    a107740 n = length [() | let p = a000040 n,
                             m <- [max 0 (p - 9 * a055642 p) .. p - 1],
                             a062028 m == p]
    -- Reinhard Zumkeller, Sep 27 2014
    
  • Mathematica
    Table[p=Prime[n];c=0;i=1;While[iJayanta Basu, May 03 2013 *)
  • PARI
    apply( A107740(n)=A230093(prime(n)), [1..150]) \\ M. F. Hasler, Nov 08 2018

Formula

a(n) = A230093(prime(n)), i.e.: A107740 = A230093 o A000040. - M. F. Hasler, Nov 08 2018

A230099 a(n) = n + (product of digits of n).

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 50, 56, 62, 68, 74, 80, 86, 92, 98, 104, 60, 67, 74, 81, 88, 95, 102, 109, 116, 123, 70, 78, 86, 94, 102, 110, 118, 126
Offset: 0

Views

Author

N. J. A. Sloane, Oct 12 2013

Keywords

Comments

A230099, A063114, A098736, A230101 are analogs of A092391 and A062028.

Crossrefs

Programs

  • Haskell
    a230099 n = a007954 n + n  -- Reinhard Zumkeller, Oct 13 2013
    
  • Maple
    with transforms; [seq(n+digprod(n), n=0..200)];
  • PARI
    a(n) = if (n, n + vecprod(digits(n)), 0); \\ Michel Marcus, Dec 18 2018
    
  • Python
    from math import prod
    def a(n): return n + prod(map(int, str(n)))
    print([a(n) for n in range(78)]) # Michael S. Branicky, Jan 09 2023

Formula

a(n) = n iff n contains a digit 0 (A011540). - Bernard Schott, Jul 31 2023

A016096 a(n+1) = a(n) + sum of its digits, with a(1) = 9.

Original entry on oeis.org

9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 117, 126, 135, 144, 153, 162, 171, 180, 189, 207, 216, 225, 234, 243, 252, 261, 270, 279, 297, 315, 324, 333, 342, 351, 360, 369, 387, 405, 414, 423, 432, 441, 450, 459, 477, 495, 513, 522, 531, 540
Offset: 1

Views

Author

Keywords

References

  • D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately printed, 311 Devlali Camp, Devlali, India, 1963.

Crossrefs

Programs

  • Haskell
    a016096 n = a016096_list !! (n-1)
    a016096_list = iterate a062028 9  -- Reinhard Zumkeller, Oct 14 2013
    
  • Python
    from itertools import islice
    def A016096_gen(): # generator of terms
        a = 9
        while True:
            yield a
            a += sum(int(d) for d in str(a))
    A016096_list = list(islice(A016096_gen(),20)) # Chai Wah Wu, Mar 29 2022

Formula

a(n) = A062028(a(n-1)) for n > 1. - Reinhard Zumkeller, Oct 14 2013

A090009 Begins the earliest length-n chain of primes such that any term in the chain equals the previous term increased by the sum of its digits.

Original entry on oeis.org

2, 11, 11, 277, 37783, 516493, 286330897, 286330897, 56676324799
Offset: 1

Views

Author

Joseph L. Pe, Jan 27 2004

Keywords

Comments

From the second term on, subsequence of A[2] := A048519. Due to the "exclusive" definition of this sequence, A048523(1) > a(2), but for k >= 3, a(k) = A[k](1) for A[3..9] = A048524 .. A048527, A320878 .. A320880. - M. F. Hasler, Nov 09 2018

Examples

			11 begins the earliest chain 11, 13, 17 of three primes such that any term in the chain equals the previous term increased by the sum of its digits, viz., 13 = 11 + 2, 17 = 13 + 4. Hence a(3) = 11.
		

Crossrefs

Cf. A047791, A048519, A062028 (n + digit sum of n).

Programs

Extensions

a(7)-a(8) from Donovan Johnson, Jan 08 2013
a(9) from Giovanni Resta, Jan 14 2013

A048523 Primes for which only one iteration of 'Prime plus its digit sum equals a prime' is possible.

Original entry on oeis.org

13, 19, 37, 53, 71, 73, 97, 103, 127, 163, 181, 233, 271, 307, 383, 389, 431, 433, 499, 509, 563, 587, 631, 701, 743, 787, 811, 857, 859, 947, 1009, 1049, 1061, 1087, 1153, 1171, 1223, 1283, 1423, 1483, 1489, 1553, 1597, 1601, 1607, 1733, 1801, 1861, 1867
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

Sequence A048519 lists the primes for which at least (rather than exactly) one iteration of A062028 is "possible". See A048524 .. A048527 and A320878 .. A320880 for further subsequences, and A090009 for the list of their initial terms, starting chains of length >= 3 .. 9. - M. F. Hasler, Nov 09 2018

Examples

			prime 1999 -> 1999 + (1+9+9+9) = prime 2027 -> next iteration yields composite 2038.
		

Crossrefs

Programs

  • Mathematica
    ppd1Q[n_]:=PrimeQ[Rest[NestList[#+Total[IntegerDigits[#]]&,n,2]]] == {True,False}; Select[Prime[Range[300]],ppd1Q] (* Harvey P. Dale, Nov 10 2011 *)

A048527 Primes for which only five iterations of 'Prime plus its digit sum equals a prime' are possible.

Original entry on oeis.org

516493, 1056493, 1427383, 1885943, 3166183, 3805183, 4241593, 6621283, 7646953, 12912283, 17987839, 32106493, 107152093, 120224773, 131144473, 133210873, 139388891, 142782877, 150326173, 155382923, 177865819, 184081943, 227795839, 242376877, 264174877
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Examples

			516493 -> 516521 -> 516541 -> 516563 -> 516589 -> 516623 -> next iteration yields a composite.
		

Crossrefs

Cf. A047791, A048519, A062028 (n + digit sum of n).

Programs

Extensions

Offset changed to 1 and a(15)-a(24) from Lars Blomberg, Dec 04 2013
Previous Showing 21-30 of 80 results. Next