cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 80 results. Next

A232490 Numbers k such that 10^k is of the form m + sum of digits of m.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93
Offset: 1

Views

Author

N. J. A. Sloane, Dec 01 2013

Keywords

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, pp. 115-117 and 122.
  • D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers (Part V). 311 Devlali Camp, Devlali, India, 1967.

Crossrefs

Extensions

Terms a(16) onward from Max Alekseyev, Dec 02 2013

A107741 Smallest number m such that prime(n) = m + (digit sum of m), a(n)=0 if no such m exists.

Original entry on oeis.org

1, 0, 0, 0, 10, 11, 13, 14, 16, 19, 0, 32, 34, 35, 37, 0, 52, 53, 56, 58, 59, 71, 73, 76, 0, 91, 92, 94, 95, 97, 122, 124, 127, 128, 142, 143, 146, 149, 160, 163, 166, 167, 181, 182, 184, 185, 0, 215, 217, 218, 0, 232, 233, 238, 250, 253, 256, 257, 0, 271
Offset: 1

Views

Author

Reinhard Zumkeller, May 23 2005

Keywords

Comments

If a(n)>0 then: A000040(n)=A062028(a(n)) and A107740(n)>0.

Crossrefs

Programs

  • Haskell
    a107741 n = if null ms then 0 else head ms  where
       ms = [m | let p = a000040 n,
                 m <- [max 0 (p - 9 * a055642 p) .. p - 1], a062028 m == p]
    -- Reinhard Zumkeller, Sep 27 2014

Extensions

Data error corrected by Reinhard Zumkeller, Sep 27 2014

A107743 Numbers m such that m+(digit sum of m) is a composite number.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 54, 55, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93
Offset: 1

Views

Author

Reinhard Zumkeller, May 23 2005

Keywords

Comments

Complement of A047791.

Examples

			A062028(21)=21+(2+1)=24=2*2*2*3, therefore 21 is a term.
		

Crossrefs

Programs

  • Haskell
    a107743 n = a107743_list !! (n-1)
    a107743_list = filter ((== 0) . a010051' . a062028) [1..]
    -- Reinhard Zumkeller, Sep 27 2014
  • Mathematica
    Select[Range[100],CompositeQ[#+Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Oct 12 2016 *)

A171672 Numbers m with property that m^2 is not of form (k + sum of digits of k).

Original entry on oeis.org

1, 3, 8, 11, 20, 76, 83, 86, 94, 97, 104, 110, 133, 137, 166, 173, 176, 184, 187, 194, 223, 256, 263, 264, 266, 274, 275, 277, 284, 332, 353, 356, 364, 367, 396, 403, 407, 436, 443, 454, 457, 464, 504, 533, 535, 546, 587, 623, 624, 625, 634, 637, 644, 654, 673
Offset: 1

Views

Author

Zak Seidov, Dec 15 2009

Keywords

Crossrefs

Cf. A003052 (self or Colombian numbers), A171671 (m^2 are self numbers), A062028 (a(n) = n + sum of the digits of n), A171673 (n and n^2 are self numbers).

Programs

  • Mathematica
    nn=5*10^5; list=Table[n + Total[IntegerDigits[n]],{n,nn}]; Select[Sqrt[Complement[Range[nn],list]], IntegerQ[#] &] (* Jayanta Basu, May 06 2013 *)

Formula

a(n) = sqrt(A171671(n)).

Extensions

Changed the word "safe" in this entry to "self". - N. J. A. Sloane, Feb 26 2017

A247104 Squarefree self-numbers.

Original entry on oeis.org

3, 5, 7, 31, 42, 53, 86, 97, 110, 143, 154, 165, 187, 209, 211, 222, 233, 255, 266, 277, 299, 310, 323, 334, 345, 367, 389, 411, 413, 435, 446, 457, 479, 501, 514, 547, 569, 591, 602, 613, 615, 626, 659, 670, 681, 703, 714, 727, 749, 771, 782, 793, 815, 817
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 18 2014

Keywords

Comments

Squarefree numbers not expressible as the sum of an integer and its digit sum;
intersection of A005117 and A003052.

Crossrefs

Cf. A005117, A003052, A008966, A062028, A006378 (subsequence), A249044.

Programs

  • Haskell
    a247104 n = a247104_list !! (n-1)
    a247104_list = filter ((== 1) . a008966) $ tail a003052_list
  • Mathematica
    nmax = 1000;
    Select[Complement[Range[nmax], Union[Table[n + Total[IntegerDigits[n]], {n, 1, nmax}]]], #>1 && SquareFreeQ[#]&] (* Jean-François Alcover, Jan 08 2020, after T. D. Noe in A003052 *)

Formula

A008966(a(n)) * (1 - A230093(a(n))) = 1.

A248110 Table read by rows: n-th row contains the q successors of n, where q = A007953(n), the digit sum of n in decimal representation.

Original entry on oeis.org

2, 3, 4, 4, 5, 6, 5, 6, 7, 8, 6, 7, 8, 9, 10, 7, 8, 9, 10, 11, 12, 8, 9, 10, 11, 12, 13, 14, 9, 10, 11, 12, 13, 14, 15, 16, 10, 11, 12, 13, 14, 15, 16, 17, 18, 11, 12, 13, 13, 14, 15, 14, 15, 16, 17, 15, 16, 17, 18, 19, 16, 17, 18, 19, 20, 21, 17, 18, 19, 20
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 01 2014

Keywords

Comments

First 9 rows coincide with triangle A108872;
T(n,1) = n + 1; T(n,A007953(n)) = n + A007953(n) = A062028(n).

Examples

			.   n |   T(n,*)                                 | A007953(n)
.  ---+------------------------------------------+-----------
.   1 |    2                                     |       1
.   2 |    3,  4                                 |       2
.   3 |    4,  5,  6                             |       3
.   4 |    5,  6,  7,  8                         |       4
.   5 |    6,  7,  8,  9, 10                     |       5
.   6 |    7,  8,  9, 10, 11, 12                 |       6
.   7 |    8,  9, 10, 11, 12, 13, 14             |       7
.   8 |    9, 10, 11, 12, 13, 14, 15, 16         |       8
.   9 |   10, 11, 12, 13, 14, 15, 16, 17, 18     |       9
.  10 |   11                                     |       1
.  11 |   12, 13                                 |       2
.  12 |   13, 14, 15                             |       3
.  13 |   14, 15, 16, 17                         |       4
.  14 |   15, 16, 17, 18, 19                     |       5
.  15 |   16, 17, 18, 19, 20, 21                 |       6
.  16 |   17, 18, 19, 20, 21, 22, 23             |       7
.  17 |   18, 19, 20, 21, 22, 23, 24, 25         |       8
.  18 |   19, 20, 21, 22, 23, 24, 25, 26, 27     |       9
.  19 |   20, 21, 22, 23, 24, 25, 26, 27, 28, 29 |      10
.  20 |   21, 22                                 |       2
		

Crossrefs

Cf. A007953 (row lengths), A062028, A108872.

Programs

  • Haskell
    a248110 n k = a248110_tabf !! (n-1) !! (k-1)
    a248110_row n = a248110_tabf !! (n-1)
    a248110_tabf = map (\x -> [x + 1 .. x + a007953 x]) [1 ..]

A350229 a(n) is the sum of n and the balanced ternary digits in n.

Original entry on oeis.org

0, 2, 2, 4, 6, 4, 6, 8, 8, 10, 12, 12, 14, 16, 12, 14, 16, 16, 18, 20, 20, 22, 24, 22, 24, 26, 26, 28, 30, 30, 32, 34, 32, 34, 36, 36, 38, 40, 40, 42, 44, 38, 40, 42, 42, 44, 46, 46, 48, 50, 48, 50, 52, 52, 54, 56, 56, 58, 60, 58, 60, 62, 62, 64, 66, 66, 68
Offset: 0

Views

Author

Rémy Sigrist, Jan 09 2022

Keywords

Comments

The image of this sequence is the set of nonnegative even numbers (A005843).

Examples

			For n = 42:
- the balanced ternary representation of 42 is "1TTT0",
- so a(42) = 42 + 1 - 1 - 1 - 1 + 0 = 40.
		

Crossrefs

See A062028, A092391, A230641 for similar sequences.
Cf. A005843, A065363, A174658 (fixed points).

Programs

  • Mathematica
    Array[# + Total[If[First@ # == 0, Rest@ #, #] &[Prepend[IntegerDigits[#, 3], 0] //. {x___, y_, k_ /; k > 1, z___} :> {x, y + 1, k - 3, z}]] &, 70, 0] (* Michael De Vlieger, Jan 15 2022 *)
  • PARI
    a(n) = my (v=n, d); while (n, n=(n-d=[0,1,-1][1+n%3])/3; v+=d); v

Formula

a(n) = n + A065363(n).
a(n) = n iff n belongs to A174658.

A377422 Numbers that can be expressed as (m + sum of digits of m) in exactly four ways.

Original entry on oeis.org

1000000000000000000000102, 1000000000000000000000104, 1000000000000000000000106, 1000000000000000000000108, 1000000000000000000000110, 1000000000000000000000112, 1000000000000000000000114, 2000000000000000000000103, 2000000000000000000000105, 2000000000000000000000107, 2000000000000000000000109
Offset: 1

Views

Author

Daniel Mondot, Oct 27 2024

Keywords

Comments

Numbers k such that A230093(k) = 0 give A003052, the Self or Colombian numbers.
Numbers k such that A230093(k) = 1 give A225793.
Numbers k such that A230093(k) = 2 give A230094.
Numbers k such that A230093(k) = 3 give A230100.
Numbers k such that A230093(k) = 4 give this sequence.

Examples

			There are exactly four numbers, 999999999999999999999894, 999999999999999999999903, 1000000000000000000000092, and 1000000000000000000000101, whose image under n->f(n) is 1000000000000000000000104, so 1000000000000000000000104 is a member of the sequence.
		

Crossrefs

Extensions

Corrected by Daniel Mondot, Apr 17 2025

A084661 Numbers k such that k + sum_of_digits(k) is a cube.

Original entry on oeis.org

4, 18, 121, 198, 207, 329, 720, 977, 1318, 2183, 2731, 3357, 4082, 4891, 4900, 5814, 6836, 7969, 9243, 10634, 12154, 13797, 13806, 15611, 17554, 19656, 21929, 24367, 26973, 29759, 32746, 39281, 42853, 46629, 54850, 59292, 59301, 63968, 68890, 74070, 79475
Offset: 1

Views

Author

Zak Seidov, Jun 29 2003

Keywords

Comments

A066564 lists numbers k such that k + sum_of_digits(k) is a square.

Examples

			a(3)=121 because 121 + (1 + 2 + 1) = 125 = 5^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[80000],IntegerQ[Surd[#+Total[IntegerDigits[#]],3]]&] (* Harvey P. Dale, Sep 13 2018 *)
  • PARI
    isok(n) = ispower(n + sumdigits(n), 3); \\ Michel Marcus, Oct 09 2013

Extensions

More terms from Michel Marcus, Oct 04 2013

A108638 Semiprime plus its digits is semiprime.

Original entry on oeis.org

15, 22, 26, 33, 38, 39, 49, 51, 55, 57, 74, 77, 115, 123, 129, 134, 145, 155, 161, 169, 178, 187, 202, 206, 213, 214, 221, 237, 254, 265, 274, 278, 291, 299, 301, 303, 309, 321, 327, 335, 361, 371, 377, 381, 382, 386, 411, 437, 445, 466, 478, 485, 497, 505
Offset: 1

Views

Author

Zak Seidov, Jun 14 2005

Keywords

Comments

Members k of A001358 such that A062028(k) is in A001358. - Robert Israel, Oct 01 2024
Surprisingly there are only three(?) semiprimes sp, 10,14,15, such that sp minus its digits is semiprime.
That is because n - (sum of its digits) = A066568(n) is divisible by 9. - Robert Israel, Oct 01 2024

Examples

			15=3*5 and 15+1+5=21=3*7.
		

Crossrefs

Programs

  • Maple
    filter:= n -> numtheory:-bigomega(n) = 2 and numtheory:-bigomega(n+convert(convert(n,base,10),`+`))=2:
    select(filter, [$1..1000]); # Robert Israel, Oct 01 2024
  • Mathematica
    Select[Range[500], Plus@@Last/@FactorInteger[ # ]==Plus@@Last/@FactorInteger[ #+Plus@@IntegerDigits[ # ]]==2&]
Previous Showing 51-60 of 80 results. Next