A232490
Numbers k such that 10^k is of the form m + sum of digits of m.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93
Offset: 1
- M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, pp. 115-117 and 122.
- D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
- D. R. Kaprekar, The Mathematics of the New Self Numbers (Part V). 311 Devlali Camp, Devlali, India, 1967.
A107741
Smallest number m such that prime(n) = m + (digit sum of m), a(n)=0 if no such m exists.
Original entry on oeis.org
1, 0, 0, 0, 10, 11, 13, 14, 16, 19, 0, 32, 34, 35, 37, 0, 52, 53, 56, 58, 59, 71, 73, 76, 0, 91, 92, 94, 95, 97, 122, 124, 127, 128, 142, 143, 146, 149, 160, 163, 166, 167, 181, 182, 184, 185, 0, 215, 217, 218, 0, 232, 233, 238, 250, 253, 256, 257, 0, 271
Offset: 1
-
a107741 n = if null ms then 0 else head ms where
ms = [m | let p = a000040 n,
m <- [max 0 (p - 9 * a055642 p) .. p - 1], a062028 m == p]
-- Reinhard Zumkeller, Sep 27 2014
A107743
Numbers m such that m+(digit sum of m) is a composite number.
Original entry on oeis.org
2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 54, 55, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93
Offset: 1
A062028(21)=21+(2+1)=24=2*2*2*3, therefore 21 is a term.
-
a107743 n = a107743_list !! (n-1)
a107743_list = filter ((== 0) . a010051' . a062028) [1..]
-- Reinhard Zumkeller, Sep 27 2014
-
Select[Range[100],CompositeQ[#+Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Oct 12 2016 *)
A171672
Numbers m with property that m^2 is not of form (k + sum of digits of k).
Original entry on oeis.org
1, 3, 8, 11, 20, 76, 83, 86, 94, 97, 104, 110, 133, 137, 166, 173, 176, 184, 187, 194, 223, 256, 263, 264, 266, 274, 275, 277, 284, 332, 353, 356, 364, 367, 396, 403, 407, 436, 443, 454, 457, 464, 504, 533, 535, 546, 587, 623, 624, 625, 634, 637, 644, 654, 673
Offset: 1
Cf.
A003052 (self or Colombian numbers),
A171671 (m^2 are self numbers),
A062028 (a(n) = n + sum of the digits of n),
A171673 (n and n^2 are self numbers).
-
nn=5*10^5; list=Table[n + Total[IntegerDigits[n]],{n,nn}]; Select[Sqrt[Complement[Range[nn],list]], IntegerQ[#] &] (* Jayanta Basu, May 06 2013 *)
Changed the word "safe" in this entry to "self". -
N. J. A. Sloane, Feb 26 2017
A247104
Squarefree self-numbers.
Original entry on oeis.org
3, 5, 7, 31, 42, 53, 86, 97, 110, 143, 154, 165, 187, 209, 211, 222, 233, 255, 266, 277, 299, 310, 323, 334, 345, 367, 389, 411, 413, 435, 446, 457, 479, 501, 514, 547, 569, 591, 602, 613, 615, 626, 659, 670, 681, 703, 714, 727, 749, 771, 782, 793, 815, 817
Offset: 1
-
a247104 n = a247104_list !! (n-1)
a247104_list = filter ((== 1) . a008966) $ tail a003052_list
-
nmax = 1000;
Select[Complement[Range[nmax], Union[Table[n + Total[IntegerDigits[n]], {n, 1, nmax}]]], #>1 && SquareFreeQ[#]&] (* Jean-François Alcover, Jan 08 2020, after T. D. Noe in A003052 *)
A248110
Table read by rows: n-th row contains the q successors of n, where q = A007953(n), the digit sum of n in decimal representation.
Original entry on oeis.org
2, 3, 4, 4, 5, 6, 5, 6, 7, 8, 6, 7, 8, 9, 10, 7, 8, 9, 10, 11, 12, 8, 9, 10, 11, 12, 13, 14, 9, 10, 11, 12, 13, 14, 15, 16, 10, 11, 12, 13, 14, 15, 16, 17, 18, 11, 12, 13, 13, 14, 15, 14, 15, 16, 17, 15, 16, 17, 18, 19, 16, 17, 18, 19, 20, 21, 17, 18, 19, 20
Offset: 1
. n | T(n,*) | A007953(n)
. ---+------------------------------------------+-----------
. 1 | 2 | 1
. 2 | 3, 4 | 2
. 3 | 4, 5, 6 | 3
. 4 | 5, 6, 7, 8 | 4
. 5 | 6, 7, 8, 9, 10 | 5
. 6 | 7, 8, 9, 10, 11, 12 | 6
. 7 | 8, 9, 10, 11, 12, 13, 14 | 7
. 8 | 9, 10, 11, 12, 13, 14, 15, 16 | 8
. 9 | 10, 11, 12, 13, 14, 15, 16, 17, 18 | 9
. 10 | 11 | 1
. 11 | 12, 13 | 2
. 12 | 13, 14, 15 | 3
. 13 | 14, 15, 16, 17 | 4
. 14 | 15, 16, 17, 18, 19 | 5
. 15 | 16, 17, 18, 19, 20, 21 | 6
. 16 | 17, 18, 19, 20, 21, 22, 23 | 7
. 17 | 18, 19, 20, 21, 22, 23, 24, 25 | 8
. 18 | 19, 20, 21, 22, 23, 24, 25, 26, 27 | 9
. 19 | 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 | 10
. 20 | 21, 22 | 2
A350229
a(n) is the sum of n and the balanced ternary digits in n.
Original entry on oeis.org
0, 2, 2, 4, 6, 4, 6, 8, 8, 10, 12, 12, 14, 16, 12, 14, 16, 16, 18, 20, 20, 22, 24, 22, 24, 26, 26, 28, 30, 30, 32, 34, 32, 34, 36, 36, 38, 40, 40, 42, 44, 38, 40, 42, 42, 44, 46, 46, 48, 50, 48, 50, 52, 52, 54, 56, 56, 58, 60, 58, 60, 62, 62, 64, 66, 66, 68
Offset: 0
For n = 42:
- the balanced ternary representation of 42 is "1TTT0",
- so a(42) = 42 + 1 - 1 - 1 - 1 + 0 = 40.
-
Array[# + Total[If[First@ # == 0, Rest@ #, #] &[Prepend[IntegerDigits[#, 3], 0] //. {x___, y_, k_ /; k > 1, z___} :> {x, y + 1, k - 3, z}]] &, 70, 0] (* Michael De Vlieger, Jan 15 2022 *)
-
a(n) = my (v=n, d); while (n, n=(n-d=[0,1,-1][1+n%3])/3; v+=d); v
A377422
Numbers that can be expressed as (m + sum of digits of m) in exactly four ways.
Original entry on oeis.org
1000000000000000000000102, 1000000000000000000000104, 1000000000000000000000106, 1000000000000000000000108, 1000000000000000000000110, 1000000000000000000000112, 1000000000000000000000114, 2000000000000000000000103, 2000000000000000000000105, 2000000000000000000000107, 2000000000000000000000109
Offset: 1
There are exactly four numbers, 999999999999999999999894, 999999999999999999999903, 1000000000000000000000092, and 1000000000000000000000101, whose image under n->f(n) is 1000000000000000000000104, so 1000000000000000000000104 is a member of the sequence.
A084661
Numbers k such that k + sum_of_digits(k) is a cube.
Original entry on oeis.org
4, 18, 121, 198, 207, 329, 720, 977, 1318, 2183, 2731, 3357, 4082, 4891, 4900, 5814, 6836, 7969, 9243, 10634, 12154, 13797, 13806, 15611, 17554, 19656, 21929, 24367, 26973, 29759, 32746, 39281, 42853, 46629, 54850, 59292, 59301, 63968, 68890, 74070, 79475
Offset: 1
a(3)=121 because 121 + (1 + 2 + 1) = 125 = 5^3.
-
Select[Range[80000],IntegerQ[Surd[#+Total[IntegerDigits[#]],3]]&] (* Harvey P. Dale, Sep 13 2018 *)
-
isok(n) = ispower(n + sumdigits(n), 3); \\ Michel Marcus, Oct 09 2013
A108638
Semiprime plus its digits is semiprime.
Original entry on oeis.org
15, 22, 26, 33, 38, 39, 49, 51, 55, 57, 74, 77, 115, 123, 129, 134, 145, 155, 161, 169, 178, 187, 202, 206, 213, 214, 221, 237, 254, 265, 274, 278, 291, 299, 301, 303, 309, 321, 327, 335, 361, 371, 377, 381, 382, 386, 411, 437, 445, 466, 478, 485, 497, 505
Offset: 1
15=3*5 and 15+1+5=21=3*7.
-
filter:= n -> numtheory:-bigomega(n) = 2 and numtheory:-bigomega(n+convert(convert(n,base,10),`+`))=2:
select(filter, [$1..1000]); # Robert Israel, Oct 01 2024
-
Select[Range[500], Plus@@Last/@FactorInteger[ # ]==Plus@@Last/@FactorInteger[ #+Plus@@IntegerDigits[ # ]]==2&]
Comments