0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 6, 6, 7, 6, 7, 5, 6, 6, 7, 6, 7, 7, 7, 6, 7, 7, 8, 7, 7, 8, 9, 6, 7, 7, 7, 7, 8, 7, 8, 7, 8, 8, 9, 7, 8, 8, 8, 6, 7, 7, 8, 7, 8, 8, 9, 7, 8, 8, 8, 8, 9, 8, 9, 7, 8, 8, 9, 8, 8, 9, 9, 8, 9, 8, 9, 9, 9, 10, 9, 7, 8, 8, 8, 8, 9, 8, 9, 8, 9
Offset: 1
A117632
Number of 1's required to build n using {+,T} and parentheses, where T(i) = i*(i+1)/2.
Original entry on oeis.org
1, 2, 2, 3, 4, 2, 3, 4, 4, 3, 4, 4, 5, 6, 4, 5, 6, 6, 7, 6, 2, 3, 4, 4, 5, 6, 4, 3, 4, 5, 5, 6, 6, 5, 6, 4, 5, 6, 6, 7, 8, 4, 5, 6, 4, 5, 6, 6, 5, 6, 6, 7, 8, 8, 3, 4, 5, 5, 6, 7, 5, 6, 6, 7, 6, 4, 5, 6, 6, 7, 8, 6, 7, 8, 8, 5, 6, 4, 5, 6, 6, 7, 6, 6, 7, 8, 6, 7, 8, 8, 5, 6, 7, 7, 8, 9, 7, 8, 6, 7, 8, 8
Offset: 1
a(1) = 1 because "1" has a single 1.
a(2) = 2 because "1+1" has two 1's.
a(3) = 2 because 3 = T(1+1) has two 1's.
a(6) = 2 because 6 = T(T(1+1)).
a(10) = 3 because 10 = T(T(1+1)+1).
a(12) = 4 because 12 = T(T(1+1)) + T(T(1+1)).
a(15) = 4 because 15 = T(T(1+1)+1+1).
a(21) = 2 because 21 = T(T(T(1+1))).
a(28) = 3 because 28 = T(T(T(1+1))+1).
a(55) = 3 because 55 = T(T(T(1+1)+1)).
- W. A. Beyer, M. L. Stein and S. M. Ulam, The Notion of Complexity. Report LA-4822, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, 1971.
- R. K. Guy, Unsolved Problems Number Theory, Sect. F26.
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- W. A. Beyer, M. L. Stein and S. M. Ulam, The Notion of Complexity. Report LA-4822, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, December 1971. [Annotated scanned copy]
- R. K. Guy, Some suspiciously simple sequences, Amer. Math. Monthly 93 (1986), 186-190; 94 (1987), 965; 96 (1989), 905.
- Ed Pegg, Jr., Integer Complexity.
- Eric Weisstein's World of Mathematics, Integer Complexity.
- Wikipedia, Optimal substructure.
Cf.
A000217,
A005245,
A005520,
A003313,
A076142,
A076091,
A061373,
A005421,
A023361,
A053614,
A064097,
A025280,
A003037,
A099129,
A050536,
A050542,
A050548,
A050909,
A007501.
-
a:= proc(n) option remember; local m; m:= floor (sqrt (n*2));
if n<3 then n
elif n=m*(m+1)/2 then a(m)
else min (seq (a(i)+a(n-i), i=1..floor(n/2)))
fi
end:
seq (a(n), n=1..110); # Alois P. Heinz, Jan 05 2011
-
a[n_] := a[n] = Module[{m = Floor[Sqrt[n*2]]}, If[n < 3, n, If[n == m*(m + 1)/2, a[m], Min[Table[a[i] + a[n - i], {i, 1, Floor[n/2]}]]]]];
Array[a, 110] (* Jean-François Alcover, Jun 02 2018, from Maple *)
I do not know how many of these entries have been proved to be minimal. -
N. J. A. Sloane, Apr 15 2006
Original entry on oeis.org
1, 6, 15, 33, 65, 77, 154, 161, 217, 231, 455, 469, 483, 693, 957, 987, 1001, 1449, 1463, 2021, 2717, 2093, 2415, 2967, 3003, 4147, 3059, 4853, 4945, 4899, 6083, 8533, 4991, 7161, 9982, 8987, 9177, 10787, 10857, 10465, 10199, 12857, 14539, 20355, 18753, 20398
Offset: 1
1 is the first term since 1 is the empty product.
6 follows 1 since 2 <= m <= 5 have total order, thus the maximum number in A333184 is 1. For m = 6, the mapping f(m) has two distinct results {4, 3}, which generate chains {4, 2, 1} and {3, 2, 1}, respectively, with the last two terms in both chains coincident. Since the largest number of terms in an antichain is 2, a(2) = 6.
15 follows 6 since row 15 of A334184 = [1, 2, 3, 2, 1, 1] is the smallest m for which n = 3 appears.
Hasse diagrams of the 3 smallest terms, with brackets around the widest row.
[1] 6 15
/ \ /\
/ \ / \
[4 3] 12 __10
| / | \/ |
| / |_/\ |
2 [8 _6 5]
| | /_|_/
| |// |
1 4 3
| /
|_/
2
|
|
1
-
With[{s = Table[Max[Length@ Union@ # & /@ Transpose@ #] &@ If[n == 1, {{1}}, NestWhile[If[Length[#] == 0, Map[{n, #} &, # - # /FactorInteger[#][[All, 1]] ], Union[Join @@ Map[Function[{w, n}, Map[Append[w, If[n == 0, 0, n - n/#]] &, FactorInteger[n][[All, 1]] ]] @@ {#, Last@ #} &, #]] ] &, n, If[ListQ[#], AllTrue[#, Last[#] > 1 &], # > 1] &]], {n, 10^3}]}, TakeWhile[Array[FirstPosition[s, #][[1]] &, Max@ s], IntegerQ]]
f[n_] := Block[{lst = {{n}}}, While[lst[[-1]] != {1}, lst = Join[ lst, {Union[ Flatten[# - #/(First@# & /@ FactorInteger@#) & /@ lst[[-1]]] ]}]]; Max[Length@# & /@ lst]]; t[] := 0; k = 1; While[k < 21001, a = f@k; If[ t[a] == 0, t[a] = k]; k++]; t@# & /@ Range@ 46 (* _Robert G. Wilson v, Jun 14 2020 *)
A104233
Positive integers which have a "compact" representation using fewer decimal digits than just writing the number normally.
Original entry on oeis.org
125, 128, 216, 243, 256, 343, 512, 625, 729, 1000, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1080, 1089, 1125, 1152, 1156, 1215, 1225, 1250, 1280, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294
Offset: 1
From _Bernard Schott_, Feb 10 2021: (Start)
a(1) = 125 = [5^3] = 5*5*5 is the smallest cube.
a(5) = 256 = [2^8] = [4^4] = 16*16 is the smallest square.
a(6) = 343 = [7^3] is the smallest palindrome.
a(15) = 1019 = [4^5-5] is the smallest prime.
6555 = [3^8-5] = [35^2] = T(49) = 49*50/2 is the smallest triangular number.
362880 = 9! = [70*72^2] = [8*(6^6-6^4)] is the smallest factorial.
The smallest zeroless pandigital number 123456789 = [(10^10-91)/81] = [3*(6415^2+38)] is a term. (End)
The largest pandigital number 9876543210 = [(8*10^11+10)/81] = [(8*10^11+10)/9^2] = [5*(15^5+67)*51^2] is also a term. - _Bernard Schott_, Apr 20 2022
- R. K. Guy, Unsolved Problems Number Theory, Sect. F26.
- J. Arias de Reyna, Complejidad de los números naturales, Gaceta R. Soc. Mat. Esp., 3 (2000), 230-250. [Cached copy, with permission]
- J. Arias de Reyna, Complexity of natural numbers, arXiv:2111.03345 [math.NT], 2021.
- Diophante, A164, Les entiers compressibles (in French).
- R. K. Guy, Some suspiciously simple sequences, Amer. Math. Monthly 93 (1986), 186-190; 94 (1987), 965; 96 (1989), 905.
- Eric Weisstein's World of Mathematics, Integer Complexity
- Index to sequences related to the complexity of n
Cf.
A036057,
A005245,
A003313,
A076142,
A076091,
A061373,
A005421,
A064097,
A005520,
A025280,
A003037.
Comments