cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A218741 a(n) = (38^n - 1)/37.

Original entry on oeis.org

0, 1, 39, 1483, 56355, 2141491, 81376659, 3092313043, 117507895635, 4465300034131, 169681401296979, 6447893249285203, 245019943472837715, 9310757851967833171, 353808798374777660499, 13444734338241551098963, 510899904853178941760595, 19414196384420799786902611
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 38 (A009982).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-38*x)).
a(n) = 39*a(n-1) - 38*a(n-2).
a(n) = floor(38^n/37). (End)
E.g.f.: exp(x)*(exp(37*x) - 1)/37. - Elmo R. Oliveira, Aug 29 2024

A218742 a(n) = (39^n - 1)/38.

Original entry on oeis.org

0, 1, 40, 1561, 60880, 2374321, 92598520, 3611342281, 140842348960, 5492851609441, 214221212768200, 8354627297959801, 325830464620432240, 12707388120196857361, 495588136687677437080, 19327937330819420046121, 753789555901957381798720, 29397792680176337890150081
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 39 (A009983).

Crossrefs

Programs

Formula

a(n) = floor(39^n/38).
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-39*x)).
a(n) = 40*a(n-1) - 39*a(n-2). (End)
E.g.f.: exp(20*x)*sinh(19*x)/19. - Elmo R. Oliveira, Aug 29 2024

A218747 a(n) = (44^n - 1)/43.

Original entry on oeis.org

0, 1, 45, 1981, 87165, 3835261, 168751485, 7425065341, 326702875005, 14374926500221, 632496766009725, 27829857704427901, 1224513738994827645, 53878604515772416381, 2370658598693986320765, 104308978342535398113661, 4589595047071557517001085, 201942182071148530748047741
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 44 (A009988).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-44*x)).
a(n) = 45*a(n-1) - 44*a(n-2).
a(n) = floor(44^n/43). (End)
E.g.f.: exp(x)*(exp(43*x) - 1)/43. - Elmo R. Oliveira, Aug 29 2024

A218748 a(n) = (45^n - 1)/44.

Original entry on oeis.org

0, 1, 46, 2071, 93196, 4193821, 188721946, 8492487571, 382161940696, 17197287331321, 773877929909446, 34824506845925071, 1567102808066628196, 70519626362998268821, 3173383186334922096946, 142802243385071494362571, 6426100952328217246315696
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 45 (A009989).

Crossrefs

Programs

Formula

G.f.: x/((1-x)*(1-45*x)). - Vincenzo Librandi, Nov 08 2012
a(n) = 46*a(n-1) - 45*a(n-2) with a(0)=0, a(1)=1. - Vincenzo Librandi, Nov 08 2012
a(n) = 45*a(n-1) + 1 with a(0)=0. - Vincenzo Librandi, Nov 08 2012
a(n) = floor(45^n/44). - Vincenzo Librandi, Nov 08 2012
E.g.f.: exp(23*x)*sinh(22*x)/22. - Elmo R. Oliveira, Aug 27 2024

A218749 a(n) = (46^n - 1)/45.

Original entry on oeis.org

0, 1, 47, 2163, 99499, 4576955, 210539931, 9684836827, 445502494043, 20493114725979, 942683277395035, 43363430760171611, 1994717814967894107, 91757019488523128923, 4220822896472063930459, 194157853237714940801115, 8931261248934887276851291, 410838017451004814735159387
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 46 (A009990).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 08 2012: (Start)
G.f.: x/((1-x)*(1-46*x)).
a(n) = 47*a(n-1) - 46*a(n-2) with a(0)=0, a(1)=1.
a(n) = 46*a(n-1) + 1 with a(0)=0.
a(n) = floor(46^n/45). (End)
E.g.f.: exp(x)*(exp(45*x) - 1)/45. - Elmo R. Oliveira, Aug 29 2024

A218751 a(n) = (48^n - 1)/47.

Original entry on oeis.org

0, 1, 49, 2353, 112945, 5421361, 260225329, 12490815793, 599559158065, 28778839587121, 1381384300181809, 66306446408726833, 3182709427618887985, 152770052525706623281, 7332962521233917917489, 351982201019228060039473, 16895145648922946881894705, 810966991148301450330945841
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 48 (A009992).

Crossrefs

Programs

Formula

a(n) = floor(48^n/47).
From Vincenzo Librandi, Nov 08 2012: (Start)
G.f.: x/((1-x)*(1-48*x)).
a(n) = 49*a(n-1) - 48*a(n-2) with a(0)=0, a(1)=1.
a(n) = 48*a(n-1) + 1 with a(0)=0. (End)
E.g.f.: exp(x)*(exp(47*x) - 1)/47. - Elmo R. Oliveira, Aug 29 2024

A249604 a(n) = Sum_{i=1..n} Fibonacci(i)*10^(i-1).

Original entry on oeis.org

1, 11, 211, 3211, 53211, 853211, 13853211, 223853211, 3623853211, 58623853211, 948623853211, 15348623853211, 248348623853211, 4018348623853211, 65018348623853211, 1052018348623853211, 17022018348623853211, 275422018348623853211, 4456422018348623853211
Offset: 1

Views

Author

N. J. A. Sloane, Nov 04 2014

Keywords

Examples

			To get a(10), for example:
..........1
.........1
........2
.......3
......5
.....8
...13
..21
.34
55
-----------
58623853211
		

References

  • D. R. Kaprekar, Demlofication of Fibonacci numbers, Journal of University of Bombay, Nov. 1945. Reprinted in D. R. Kaprekar, Demlo Numbers, Privately printed, Khare's Wada, Deolali, India, 1948, pp. 75-82.

Crossrefs

The analog for powers of 2 is A064108.

Programs

  • PARI
    Vec(x / ((1-x)*(1-10*x-100*x^2)) + O(x^30)) \\ Colin Barker, Jun 26 2017

Formula

O.g.f.: x/((1-x)*(1-10*x-100*x^2)). - Bruno Berselli, Nov 04 2014
From Colin Barker, Jun 26 2017: (Start)
a(n) = ((-10 + (5-21*sqrt(5))*(5-5*sqrt(5))^n + (5*(1+sqrt(5)))^n*(5+21*sqrt(5)))) / 1090.
a(n) = 11*a(n-1) + 90*a(n-2) - 100*a(n-3) for n>3.
(End)

A308238 Nonprimes k such that k^10 + k^9 + k^8 + k^7 + k^6 + k^5 + k^4 + k^3 + k^2 + k + 1 is prime.

Original entry on oeis.org

1, 20, 21, 30, 60, 86, 172, 195, 212, 224, 258, 268, 272, 319, 339, 355, 365, 366, 390, 398, 414, 480, 504, 534, 539, 543, 567, 592, 626, 654, 735, 756, 766, 770, 778, 806, 812, 874, 943, 973, 1003, 1036, 1040, 1065, 1194, 1210, 1239, 1243, 1264, 1309, 1311
Offset: 1

Views

Author

Bernard Schott, May 16 2019

Keywords

Comments

A240693 Union {this sequence} = A162862.
The corresponding prime numbers, (11111111111)_k, are Brazilian primes and belong to A085104 and A285017 (except 11).

Examples

			(11111111111)_20 = (20^11 - 1)/19 = 10778947368421 is prime, thus 20 is a term.
		

Crossrefs

Intersection of A064108 and A285017.
Similar to A182253 for k^2+k+1, A286094 for k^4+k^3+k^2+k+1, A288939 for k^6+k^5+k^4+k^3+k^2+k+1.

Programs

  • Magma
    [1] cat [n:n in [2..1500]|not IsPrime(n) and IsPrime(Floor((n^11-1)/(n-1)))]; // Marius A. Burtea, May 16 2019
    
  • Maple
    filter:= n -> not isprime(n) and isprime((n^11-1)/(n-1)) : select(filter, [$2..5000]);
  • Mathematica
    Select[Range@ 1320, And[! PrimeQ@ #, PrimeQ@ Total[#^Range[0, 10]]] &] (* Michael De Vlieger, Jun 09 2019 *)
  • PARI
    isok(n) = !isprime(n) && isprime(polcyclo(11, n)); \\ Michel Marcus, May 19 2019
Previous Showing 31-38 of 38 results.