cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A322526 Number of integer partitions of n whose product of parts is a squarefree number.

Original entry on oeis.org

1, 1, 2, 3, 3, 5, 6, 8, 9, 10, 13, 15, 17, 21, 24, 27, 30, 36, 41, 46, 51, 57, 65, 73, 82, 90, 101, 109, 121, 134, 150, 164, 177, 193, 214, 232, 253, 278, 300, 324, 351, 386, 419, 452, 484, 521, 563, 610, 658, 706, 758, 809, 868, 938, 1006, 1071, 1140, 1220, 1307
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Comments

The parts of such a partition must also be squarefree and distinct except for any number of 1's.

Examples

			The a(8) = 9 partitions are (53), (71), (521), (611), (5111), (32111), (311111), (2111111), (11111111). Missing from this list are (8), (62), (44), (431), (422), (4211), (41111), (332), (3311), (3221), (2222), (22211), (221111).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SquareFreeQ[Times@@#]&]],{n,30}]

A319071 Number of integer partitions of n whose product of parts is a perfect power and whose parts all have the same number of prime factors, counted with multiplicity.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 2, 0, 3, 2, 3, 0, 4, 1, 4, 3, 7, 1, 7, 1, 8, 6, 8, 0, 15, 5, 12, 6, 15, 4, 22, 4, 24, 12, 22, 8, 35, 7, 30, 16, 42, 9, 50, 9, 50, 30, 53, 7, 79, 22, 72, 33, 87, 21, 109, 26, 111, 55, 117, 24, 168, 40, 149, 65, 178, 59
Offset: 0

Views

Author

Gus Wiseman, Oct 10 2018

Keywords

Comments

The positions of zeros appear to be A048278.

Examples

			The a(4) = 2 through a(16) = 7 integer partitions (G = 16):
  4   33   8     9    55     66      94  77       555     G
  22  222  44    333  3322   444         5522     33333   88
           2222       22222  3333        332222   333222  664
                             222222      2222222          4444
                                                          5533
                                                          333322
                                                          22222222
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@FactorInteger[Times@@#][[All,2]]>1,SameQ@@PrimeOmega/@#]&]],{n,30}]

A322527 Number of integer partitions of n whose product of parts is a power of a squarefree number (A072774).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 13, 18, 21, 31, 34, 45, 51, 63, 72, 88, 97, 120, 128, 158, 174, 201, 222, 264, 287, 333, 359, 416, 441, 518, 557, 631, 684, 770, 833, 954, 1017, 1141, 1222, 1378, 1475, 1643, 1755, 1939, 2097, 2327, 2471, 2758, 2928, 3233, 3470, 3813, 4085
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Examples

			The a(1) = 1 through a(8) = 18 integer partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (52)       (44)
             (111)  (31)    (41)     (42)      (61)       (53)
                    (211)   (221)    (51)      (331)      (71)
                    (1111)  (311)    (222)     (421)      (422)
                            (2111)   (321)     (511)      (521)
                            (11111)  (411)     (2221)     (611)
                                     (2211)    (3211)     (2222)
                                     (3111)    (4111)     (3311)
                                     (21111)   (22111)    (4211)
                                     (111111)  (31111)    (5111)
                                               (211111)   (22211)
                                               (1111111)  (32111)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
Missing from the list for n = 7 through 9:
  (43)   (62)    (54)
  (322)  (332)   (63)
         (431)   (432)
         (3221)  (522)
                 (621)
                 (3222)
                 (3321)
                 (4311)
                 (32211)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SameQ@@Last/@FactorInteger[Times@@#]&]],{n,30}]

A322530 Number of integer partitions of n with no 1's whose product of parts is a squarefree number.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 1, 2, 1, 1, 3, 2, 2, 4, 3, 3, 3, 6, 5, 5, 5, 6, 8, 8, 9, 8, 11, 8, 12, 13, 16, 14, 13, 16, 21, 18, 21, 25, 22, 24, 27, 35, 33, 33, 32, 37, 42, 47, 48, 48, 52, 51, 59, 70, 68, 65, 69, 80, 87, 90, 103, 100, 96, 103, 123, 128, 135, 136, 132, 153
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Comments

Such a partition must be strict and its parts must also be squarefree.

Examples

			The a(26) = 11 integer partitions:
  (26),
  (15,11), (19,7), (21,5), (23,3),
  (13,7,6), (13,10,3), (13,11,2), (17,7,2), (19,5,2),
  (11,7,5,3).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&SquareFreeQ[Times@@#]&]],{n,30}]

A064572 Number of ways to partition n into parts which are all powers of some integer k.

Original entry on oeis.org

0, 1, 2, 5, 6, 10, 11, 17, 20, 26, 27, 38, 39, 47, 51, 65, 66, 82, 83, 102, 107, 123, 124, 153, 156, 178, 185, 216, 217, 254, 255, 297, 304, 342, 346, 408, 409, 457, 466, 535, 536, 609, 610, 690, 704, 780, 781, 895, 898, 998, 1009, 1130, 1131, 1263, 1268, 1418
Offset: 1

Views

Author

Marc LeBrun, Sep 20 2001

Keywords

Comments

Number of ways to partition n as Sum_i k^e_i, where the exponents e_i are not all 0.
The exponents cannot all be 0, e.g. a(2)=1 arises from 2^1, and does not include 2^0+2^0. - Shujing Lyu, Apr 23 2016

Examples

			a(4)=5: 4^1, 3^1+3^0, 2^2, 2*2^1, 2^1+2*2^0.
		

Crossrefs

Programs

  • PARI
    first(n)={Vec(sum(k=2, n, 1/prod(r=0, logint(n,k), 1-x^(k^r) + O(x*x^n)) - 1/(1-x), 0), -n)} \\ Andrew Howroyd, Dec 29 2017

Formula

G.f.: Sum_{k>=2} 1/(Product_{r>=0} 1-x^(k^r)) - 1/(1-x). - Andrew Howroyd, Dec 29 2017

A064574 Number of partitions of n into parts which are all powers of the same composite.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 4, 5, 6, 6, 9, 9, 10, 11, 15, 15, 18, 18, 22, 23, 24, 24, 30, 31, 32, 34, 38, 38, 42, 42, 48, 49, 50, 51, 60, 60, 61, 62, 69, 69, 74, 74, 79, 82, 83, 83, 94, 95, 98, 99, 105, 105, 111, 112, 120, 121, 122, 122, 134, 134, 135, 138, 149, 150, 155, 155
Offset: 1

Views

Author

Marc LeBrun, Sep 20 2001

Keywords

Comments

The exponents cannot all be 0.
Diverges from A028422 at n=20.

Examples

			a(8)=4: 8^1, 6^1+2*6^0, 2*4^1, 4^1+4*2^0
		

Crossrefs

Programs

  • PARI
    first(n)={Vec(sum(k=2, n, if(!isprime(k), 1/prod(r=0, logint(n,k), 1-x^(k^r) + O(x*x^n)) - 1/(1-x), 0)), -n)} \\ Andrew Howroyd, Dec 29 2017

Formula

G.f.: Sum_{k>=1} 1/(Product_{r>=0} 1-x^(A002808(k)^r)) - 1/(1-x). - Andrew Howroyd, Dec 29 2017

Extensions

Name clarified by Andrew Howroyd, Dec 29 2017

A064575 First differences of A064572, where A064572(n) is the number of ways to partition n into parts which are all powers of some integer.

Original entry on oeis.org

1, 1, 3, 1, 4, 1, 6, 3, 6, 1, 11, 1, 8, 4, 14, 1, 16, 1, 19, 5, 16, 1, 29, 3, 22, 7, 31, 1, 37, 1, 42, 7, 38, 4, 62, 1, 48, 9, 69, 1, 73, 1, 80, 14, 76, 1, 114, 3, 100, 11, 121, 1, 132, 5, 150, 14, 142, 1, 193, 1, 168, 20, 213, 5, 223, 1, 247, 17, 247, 1, 319, 1, 286, 25, 339, 4, 355
Offset: 1

Views

Author

Marc LeBrun, Sep 20 2001

Keywords

Comments

Apparently a(n)=1 when n+1 is prime.

Crossrefs

Programs

A064577 First differences of A064574.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 3, 0, 1, 1, 4, 0, 3, 0, 4, 1, 1, 0, 6, 1, 1, 2, 4, 0, 4, 0, 6, 1, 1, 1, 9, 0, 1, 1, 7, 0, 5, 0, 5, 3, 1, 0, 11, 1, 3, 1, 6, 0, 6, 1, 8, 1, 1, 0, 12, 0, 1, 3, 11, 1, 5, 0, 8, 1, 4, 0, 17, 0, 1, 3, 8, 1, 6, 0, 15, 4, 1, 0, 17, 1, 1, 1, 13, 0, 11, 1, 10, 1, 1, 1, 21, 0, 3, 4, 16
Offset: 1

Views

Author

Marc LeBrun, Sep 20 2001

Keywords

Comments

Apparently a(n)=0 when n+1 is prime. Diverges from A028422(n+1) at n=19.

Crossrefs

Formula

a(n) = A064574(n+1) - A064574(n). - Antti Karttunen, Feb 24 2020

A320698 Numbers whose product of prime indices is a prime power (A246655).

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 34, 36, 38, 40, 41, 42, 44, 46, 48, 49, 50, 53, 54, 56, 57, 59, 62, 63, 67, 68, 72, 76, 80, 81, 82, 83, 84, 88, 92, 96, 97, 98, 100, 103, 106, 108, 109, 112, 114, 115, 118, 121, 124
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also numbers whose prime indices are all powers of a common prime number.

Examples

			The sequence of all integer partitions whose Heinz numbers belong to the sequence begins: (2), (3), (1,2), (4), (2,2), (1,3), (5), (1,1,2), (1,4), (7), (1,2,2), (8), (1,1,3), (2,4), (1,5), (9), (1,1,1,2), (3,3), (2,2,2), (1,1,4), (11), (1,7), (1,1,2,2), (1,8), (1,1,1,3), (13), (1,2,4), (1,1,5), (1,9), (1,1,1,1,2), (4,4), (1,3,3), (16), (1,2,2,2), (1,1,1,4), (2,8).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],PrimePowerQ[Times@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]^k]]&]
  • PARI
    is(n) = my(f=factor(n)[, 1]~, p=1); for(k=1, #f, p=p*primepi(f[k])); isprimepower(p) \\ Felix Fröhlich, Oct 20 2018

A322528 Number of integer partitions of n whose parts all have the same number of prime factors (counted with multiplicity) and whose product of parts is a power of a squarefree number (A072774).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 3, 5, 4, 7, 2, 7, 4, 7, 7, 9, 3, 10, 5, 12, 9, 8, 6, 14, 10, 12, 10, 14, 11, 20, 13, 18, 13, 16, 16, 25, 16, 19, 20, 26, 18, 30, 19, 27, 26, 27, 22, 38, 30, 37, 28, 38, 32, 43, 37, 46, 40, 47, 40, 66, 49, 58, 56, 64, 56, 73, 58, 76, 70, 85
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Examples

			The a(1) = 1 through a(8) = 5 integer partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (52)       (44)
                    (1111)  (11111)  (222)     (1111111)  (53)
                                     (111111)             (2222)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[SameQ@@PrimeOmega/@#,SameQ@@Last/@FactorInteger[Times@@#]]&]],{n,30}]

Extensions

More terms from Alois P. Heinz, Dec 14 2018
Previous Showing 11-20 of 30 results. Next