cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A064598 Nonunitary deficient numbers: the sum of the nonunitary divisors of n is less than n; i.e., sigma(n) - usigma(n) < n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76
Offset: 1

Views

Author

Dean Hickerson, Sep 25 2001

Keywords

Crossrefs

Programs

  • Mathematica
    nusigma[ n_ ] := DivisorSigma[ 1, n ]-Times@@(1+Power@@#&/@FactorInteger[ n ]); For[ n=1, True, n++, If[ nusigma[ n ]
    				
  • PARI
    usigma(n)= { local(f,s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) } { n=0; for (m=1, 10^9, if (sigma(m) - usigma(m) < m, write("b064598.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 19 2009

A327633 Noninfinitary perfect numbers: numbers k whose sum of noninfinitary divisors equals k.

Original entry on oeis.org

112, 1344, 32512, 390144, 483840, 5930176, 2952609792
Offset: 1

Views

Author

Amiram Eldar, Sep 20 2019

Keywords

Comments

Numbers k such that sigma(k) - isigma(k) = A000203(k) - A049417(k) = k.
No more terms below 3 * 10^10.

Examples

			112 is in the sequence since its noninfinitary divisors are {2, 4, 8, 14, 28, 56} whose sum is 112.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); nisigma[1] = 0; nisigma[n] := DivisorSigma[1, n] - Times @@ (Flatten @ (f @@@ FactorInteger[n]) + 1); Select[Range[500000], nisigma[#] == # &]

A327945 Nonunitary pseudoperfect numbers: numbers that are equal to the sum of a subset of their nonunitary divisors.

Original entry on oeis.org

24, 36, 48, 72, 80, 96, 108, 112, 120, 144, 160, 168, 180, 192, 200, 216, 224, 240, 252, 264, 288, 300, 312, 320, 324, 336, 352, 360, 384, 392, 396, 400, 408, 416, 432, 448, 456, 468, 480, 504, 528, 540, 552, 560, 576, 588, 600, 612, 624, 640, 648, 672, 684
Offset: 1

Views

Author

Amiram Eldar, Sep 30 2019

Keywords

Comments

The nonunitary version of A005835.

Examples

			36 is in the sequence since its nonunitary divisors are 2, 3, 6, 12, 18 and 36 = 6 + 12 + 18.
		

Crossrefs

Supersequence of A064591.

Programs

  • Mathematica
    nudiv[n_] := Module[{d = Divisors[n]}, Select[d, GCD[#, n/#] > 1 &]]; s = {}; Do[d = nudiv[n]; If[Total[d] < n, Continue[]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[s, n]], {n, 1, 700}]; s

A325812 Numbers k such that gcd(A034448(k)-k, k-A048146(k)) is equal to abs(k-A048146(k)).

Original entry on oeis.org

1, 6, 12, 28, 56, 60, 108, 120, 132, 168, 264, 280, 312, 408, 420, 440, 456, 496, 528, 540, 552, 696, 700, 728, 744, 756, 760, 888, 984, 992, 1032, 1128, 1140, 1188, 1272, 1404, 1416, 1456, 1464, 1608, 1704, 1710, 1752, 1836, 1896, 1992, 2052, 2136, 2328, 2424, 2472, 2484, 2568, 2616, 2646, 2712, 3048, 3132, 3144, 3288, 3336, 3344
Offset: 1

Views

Author

Antti Karttunen, May 23 2019

Keywords

Comments

Numbers k for which A325813(k) is equal to abs(A325814(k)).
Numbers k such that A325814(k) is not zero (not in A064591) and divides A034460(k).
Conjecture: after the initial one all other terms are even. If this holds then there are no odd perfect numbers.

Crossrefs

Cf. A000396 (a subsequence).

Programs

A330824 Numbers of the form 2^(2*p), where p is a Mersenne exponent, A000043.

Original entry on oeis.org

16, 64, 1024, 16384, 67108864, 17179869184, 274877906944, 4611686018427387904, 5316911983139663491615228241121378304
Offset: 1

Views

Author

Walter Kehowski, Jan 06 2020

Keywords

Comments

Also the second element of the power-spectral basis of A064591. The first element of the power-spectral basis of A064591 is A133049.

Examples

			a(1) = 2^(2*2) = 16. Also A133049(1) = 3^2 = 9, and the spectral basis of A064591(1) = 24 is {9, 16}, consisting of primes and powers.
		

Crossrefs

Programs

  • Maple
    a := proc(n) if isprime(2^n-1) then return 2^(2*n) fi; end;
    [seq(a(n),n=1..31)]; # ithprime(31) = 127
  • Mathematica
    2^(2*MersennePrimeExponent[Range[10]]) (* Harvey P. Dale, Jun 27 2023 *)
  • PARI
    forprime(p=1,99,isprime(2^p-1)&&print1(4^p",")) \\ or better: {A330824(n)=4^A000043(n)}. - M. F. Hasler, Feb 07 2020

Formula

a(n) = 2^(2*A000043(n)) = 4^A000043(n).

A064599 The sum of the nonunitary divisors of n is a divisor of n; i.e., sigma(n) - usigma(n) divides n.

Original entry on oeis.org

4, 9, 18, 24, 25, 49, 112, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 1984, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569
Offset: 1

Views

Author

Dean Hickerson, Sep 25 2001

Keywords

Comments

The sequence consists of the nonunitary perfect numbers (A064591), squares of primes (A001248) and 18.

Crossrefs

Programs

  • Mathematica
    nusigma[ n_ ] := DivisorSigma[ 1, n ]-Times@@(1+Power@@#&/@FactorInteger[ n ]); For[ n=1, True, n++, v=nusigma[ n ]; If[ v>0&&Mod[ n, v ]==0, Print[ n ] ] ]
  • PARI
    usigma(n)= { local(f,s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) }
    { n=0; for (m=1, 10^9, v=sigma(m) - usigma(m); if (v>0 && m%v == 0, write("b064599.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 19 2009

A333927 Recursive perfect numbers: numbers k such that A333926(k) = 2*k.

Original entry on oeis.org

6, 28, 264, 1104, 3360, 75840, 151062912, 606557952, 2171581440
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2020

Keywords

Comments

Since a recursive divisor is also a (1+e)-divisor (see A049599), then the first 6 terms and other terms of this sequence coincide with those of A049603.

Examples

			264 is a term since the sum of its recursive divisors is 1 + 2 + 3 + 6 + 8 + 11 + 22 + 24 + 33 + 66 + 88 + 264 = 528 = 2 * 264.
		

Crossrefs

Analogous sequences: A000396, A002827 (unitary), A007357 (infinitary), A054979 (exponential), A064591 (nonunitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^5], recDivSum[#] == 2*# &]

A329884 Nonunitary superperfect numbers: numbers k such that nusigma(nusigma(k)) = k, where nusigma(k) = sigma(k) - usigma(k) is the sum of nonunitary divisors of k (A048146).

Original entry on oeis.org

24, 48, 56, 112, 192, 248, 252, 328, 448, 496, 768, 1016, 1792, 1984, 2032, 3240, 6462, 7936, 8128, 11616, 11808, 17412, 20538, 32512, 49152, 65528, 114688, 131056, 507904, 524224, 786432, 1048568, 1835008, 2080768, 2096896, 2097136, 3145728, 4194296, 7340032
Offset: 1

Views

Author

Amiram Eldar, Nov 23 2019

Keywords

Comments

Analogous to superperfect numbers (A019279) as nonunitary perfect numbers (A064591) is analogous to perfect numbers (A000396).

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; Select[Range[10^6], nusigma[nusigma[#]] == # &]

A335141 Numbers that are both unitary pseudoperfect (A293188) and nonunitary pseudoperfect (A327945).

Original entry on oeis.org

840, 2940, 7260, 9240, 10140, 10920, 13860, 14280, 15960, 16380, 17160, 18480, 19320, 20580, 21420, 21840, 22440, 23100, 23940, 24024, 24360, 25080, 26040, 26520, 27300, 28560, 29640, 30360, 30870, 31080, 31920, 32340, 34440, 34650, 35700, 35880, 36120, 36960
Offset: 1

Views

Author

Amiram Eldar, May 25 2020

Keywords

Comments

All the terms are nonsquarefree (since squarefree numbers do not have nonunitary divisors).
All the terms are either 3-abundant numbers (A068403) or 3-perfect numbers (A005820). None of the 6 known 3-perfect numbers are terms of this sequence. If there is a term that is 3-perfect, it is also a unitary perfect (A002827) and a nonunitary perfect (A064591).

Examples

			840 is a term since its aliquot unitary divisors are {1, 3, 5, 7, 8, 15, 21, 24, 35, 40, 56, 105, 120, 168, 280} and 1 + 5 + 7 + 8 + 15 + 35 + 40 + 56 + 105 + 120 + 168 + 280 = 840, and its nonunitary divisors are {2, 4, 6, 10, 12, 14, 20, 28, 30, 42, 60, 70, 84, 140, 210, 420} and 70 + 140 + 210 + 420 = 840.
		

Crossrefs

Intersection of A293188 and A327945.
Subsequence of A335140.

Programs

  • Mathematica
    pspQ[n_] := Module[{d = Divisors[n], ud, nd, x}, ud = Select[d, CoprimeQ[#, n/#] &]; nd = Complement[d, ud]; ud = Most[ud]; Plus @@ ud >= n && Plus @@ nd >= n && SeriesCoefficient[Series[Product[1 + x^ud[[i]], {i, Length[ud]}], {x, 0, n}], n] > 0 && SeriesCoefficient[Series[Product[1 + x^nd[[i]], {i, Length[nd]}], {x, 0, n}], n] > 0]; Select[Range[10^4], pspQ]

A063870 Numbers n such that sigma(n) - usigma(n) = 3n/2.

Original entry on oeis.org

480, 2688, 2095104, 16854816, 41055200, 1839272960, 5905219584, 204004720640
Offset: 1

Views

Author

Jason Earls, Aug 27 2001

Keywords

Crossrefs

Programs

  • PARI
    u(n) = sumdiv(n,d, if(gcd(d,n/d)==1,d)); for(n=1,10000, if(sigma(n)-u(n)==3*n/2,print(n)))

Extensions

More terms from Dean Hickerson, Sep 25 2001
There are no others less than 1.5*10^13, but here's a larger one: 948990933336933380096. - Dean Hickerson, Sep 25 2001
Previous Showing 11-20 of 26 results. Next