cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A350124 a(n) = Sum_{k=1..n} k^2 * floor(n/k)^3.

Original entry on oeis.org

1, 12, 40, 121, 207, 473, 649, 1142, 1611, 2401, 2853, 4647, 5285, 6879, 8759, 11452, 12558, 16739, 18127, 23353, 27129, 31171, 33219, 43573, 47524, 53210, 59538, 69996, 73274, 89694, 93446, 107195, 116731, 126545, 137505, 164580, 169946, 182244, 195644, 225454
Offset: 1

Views

Author

Seiichi Manyama, Dec 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[DivisorSigma[2, k] - 3*k*DivisorSigma[1, k] + 3*k^2*DivisorSigma[0, k], {k, 1, 50}]] (* Vaclav Kotesovec, Dec 17 2021 *)
  • PARI
    a(n) = sum(k=1, n, k^2*(n\k)^3);
    
  • PARI
    a(n) = sum(k=1, n, k^2*sumdiv(k, d, (d^3-(d-1)^3)/d^2));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (k^3-(k-1)^3)*x^k*(1+x^k)/(1-x^k)^3)/(1-x))
    
  • Python
    from math import isqrt
    def A350124(n): return (-(s:=isqrt(n))**4*(s+1)*(2*s+1) + sum((q:=n//k)*(k*(3*(k-1))+q*(k*(9*(k-1))+q*(k*(12*k-6)+2)+3)+1) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{k=1..n} k^2 * Sum_{d|k} (d^3 - (d - 1)^3)/d^2.
G.f.: (1/(1 - x)) * Sum_{k>=1} (k^3 - (k - 1)^3) * x^k * (1 + x^k)/(1 - x^k)^3.
From Vaclav Kotesovec, Aug 03 2022: (Start)
a(n) = A064602(n) - 3*A143128(n) + 3*A319085(n).
a(n) ~ n^3 * (log(n) + 2*gamma + (zeta(3) - 1)/3 - Pi^2/6), where gamma is the Euler-Mascheroni constant A001620. (End)

A355887 a(n) = Sum_{k=1..n} k^k * floor(n/k).

Original entry on oeis.org

1, 6, 34, 295, 3421, 50109, 873653, 17651130, 405071647, 10405074777, 295716745389, 9211817240589, 312086923832843, 11424093750214407, 449317984131076935, 18896062057857406028, 846136323944194170206, 40192544399241119212807
Offset: 1

Views

Author

Seiichi Manyama, Jul 20 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, n\k*k^k);
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, d^d));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x)^k/(1-x^k))/(1-x))
    
  • Python
    def A355887(n): return n*(1+n**(n-1))+sum(k**k*(n//k) for k in range(2,n)) if n>1 else 1 # Chai Wah Wu, Jul 21 2022

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} d^d.
G.f.: (1/(1-x)) * Sum_{k>0} (k * x)^k/(1 - x^k).

A366967 a(n) = Sum_{k=2..n} binomial(k,2) * floor(n/k).

Original entry on oeis.org

0, 1, 4, 11, 21, 40, 61, 96, 135, 191, 246, 337, 415, 528, 646, 801, 937, 1145, 1316, 1568, 1802, 2089, 2342, 2737, 3047, 3451, 3841, 4338, 4744, 5358, 5823, 6474, 7060, 7758, 8384, 9294, 9960, 10835, 11657, 12717, 13537, 14739, 15642, 16881, 18025, 19314, 20395
Offset: 1

Views

Author

Seiichi Manyama, Oct 30 2023

Keywords

Crossrefs

Partial sums of A069153.

Programs

  • PARI
    a(n) = sum(k=2, n, binomial(k, 2)*(n\k));
    
  • Python
    from math import isqrt
    def A366967(n): return ((s:=isqrt(n))**2*(1-s**2)+sum((q:=n//k)*(3*k*(k-1)+q**2-1) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 30 2023

Formula

G.f.: 1/(1-x) * Sum_{k>=1} x^(2*k)/(1-x^k)^3 = 1/(1-x) * Sum_{k>=2} binomial(k,2) * x^k/(1-x^k).
a(n) = (A064602(n)-A024916(n))/2. - Chai Wah Wu, Oct 30 2023

A109694 Decimal expansion of Sum_{n>=1} 1/sigma_2(n).

Original entry on oeis.org

1, 5, 3, 7, 8, 1, 2, 8, 9, 1, 8, 2, 7, 2, 5, 6, 1, 6, 2, 5, 3, 8, 6, 6, 1, 0, 0, 2, 7, 3, 8, 2, 6, 8, 3, 3, 0, 9, 1, 9, 3, 6, 0, 0, 4, 9, 4, 7, 3, 2, 2, 3, 5, 4, 9, 2, 9, 6, 1, 7, 6, 8, 9, 6, 5, 9, 4, 2, 6, 3, 3, 0, 4, 4, 5, 3, 1, 0, 4, 1, 0, 2, 3, 9, 5, 0, 1, 5, 5, 6, 7, 6, 0, 5, 3, 2, 3, 5, 9, 4, 8, 9, 1, 6, 0
Offset: 1

Views

Author

Keywords

Examples

			1.5378128918272561625386610027382683309193600494732235492961768965942633...
		

Crossrefs

Cf. A001157 (sigma_2), A064602.

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; Do[Clear[f]; f[p_] := (1 + Sum[(p^2 - 1)/(p^(2*e + 2) - 1), {e, 1, emax}]); m = 1000; cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; Print[f[2]*Exp[N[Sum[cc[[n]] * (PrimeZetaP[n] - 1/2^n), {n, 2, m}], 120]]], {emax, 100, 400, 100}] (* Vaclav Kotesovec, Sep 19 2020 *)
  • PARI
    N=10^9; prodeuler(p=2,N, sum(k=1,200/log(p),if(k==1,1.,1./((p^(2*k)-1)/(p^2-1))))) \\ The output is 1.537812891756...

Formula

Product_p Sum_{k>=0} 1/sigma_2(p^k).

Extensions

More digits from Vaclav Kotesovec, Sep 19 2020

A175199 a(n) is the smallest integer k such that sigma_2(k) = sigma_2(k + 2n), where sigma_2(k) is the sum of squares of divisors of k (A001157).

Original entry on oeis.org

24, 430, 645, 860, 120, 864, 168, 1720, 1935, 10790, 264, 2580, 2795, 1570, 16185, 3440, 408, 3870, 456, 21580, 2355, 4730, 552, 5160, 600, 5590, 5805, 3140, 696, 4320, 744, 6880, 7095, 1248, 840, 7740, 888, 8170, 8385, 43160, 984, 4710, 1032, 9460
Offset: 1

Views

Author

Michel Lagneau, Mar 03 2010

Keywords

Comments

The equation sigma_2(n) = sigma_2(n + p) has infinitely many solutions where p >= 2 and p is even (J. M. De Koninck).

Examples

			For n=1, sigma_2(24) = sigma_2(26) = 850.
For n=2, sigma_2(430) = sigma_2(434) = 240500.
For n=3, sigma_2(645) = sigma_2(651) = 481000.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 827.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.

Crossrefs

Programs

  • Maple
    with(numtheory):for k from 2 by 2 to 200 do :indic:=0:for n from 1 to 100000 do:liste:= divisors(n) : s2 :=sum(liste[i]^2, i=1..nops(liste)):liste:=divisors(n+k):s3:=sum(liste[i]^2, i=1..nops(liste)):if s2 = s3 and indic=0 then print(k):print(n):indic:=1:else fi:od:od:

Extensions

Edited by Robert Israel, Aug 02 2024

A309176 a(n) = n^2 * (n + 1)/2 - Sum_{k=1..n} sigma_2(k).

Original entry on oeis.org

0, 0, 2, 3, 12, 13, 33, 40, 66, 81, 135, 135, 212, 249, 319, 354, 489, 511, 681, 725, 876, 981, 1233, 1235, 1509, 1660, 1920, 2032, 2437, 2472, 2936, 3091, 3488, 3755, 4275, 4290, 4955, 5292, 5854, 6024, 6843, 6968, 7870, 8190, 8839, 9340, 10420, 10442, 11568, 12038, 13014, 13474, 14851, 15098, 16436
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n^2 (n + 1)/2 - Sum[DivisorSigma[2, k], {k, 1, n}], {n, 1, 55}]
    nmax = 55; CoefficientList[Series[x (1 + 2 x)/(1 - x)^4 - 1/(1 - x) Sum[k^2 x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[Mod[n, k] k, {k, 1, n}], {n, 1, 55}]
  • PARI
    a(n) = n^2*(n+1)/2 - sum(k=1, n, sigma(k, 2)); \\ Michel Marcus, Sep 18 2021
    
  • Python
    from math import isqrt
    def A309176(n): return (n**2*(n+1)>>1)+((s:=isqrt(n))**2*(s+1)*(2*s+1)-sum((q:=n//k)*(6*k**2+q*(2*q+3)+1) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 21 2023

Formula

G.f.: x * (1 + 2*x)/(1 - x)^4 - (1/(1 - x)) * Sum_{k>=1} k^2 * x^k/(1 - x^k).
a(n) = Sum_{k=1..n} (n mod k) * k.
a(n) = A002411(n) - A064602(n).

A379921 Partial alternating sums of the sigma_2 function: a(n) = Sum_{k=1..n} (-1)^(k+1) * sigma_2(k).

Original entry on oeis.org

1, -4, 6, -15, 11, -39, 11, -74, 17, -113, 9, -201, -31, -281, -21, -362, -72, -527, -165, -711, -211, -821, -291, -1141, -490, -1340, -520, -1570, -728, -2028, -1066, -2431, -1211, -2661, -1361, -3272, -1902, -3712, -2012, -4222, -2540, -5040, -3190, -5752, -3386
Offset: 1

Views

Author

Amiram Eldar, Jan 06 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[(-1)^(k+1) * DivisorSigma[2, k], {k, 1, 100}]]
  • PARI
    list(lim) = {my(s = 0); for(k = 1, lim, s += (-1)^(k+1) * sigma(k, 2); print1(s, ", "));}

Formula

a(n) ~ -zeta(3) * n^3 / 24.
In general, for m >= 2, Sum_{k=1..n} (-1)^(k+1) * sigma_m(k) ~ -zeta(m+1) * n^(m+1) / ((m+1)*2^(m+1)).

A356039 a(n) = Sum_{k=1..n} binomial(n,k) * sigma_3(k).

Original entry on oeis.org

1, 11, 58, 243, 866, 2804, 8485, 24387, 67333, 180086, 469338, 1196976, 2996956, 7385837, 17954243, 43125267, 102494548, 241309031, 563341508, 1305142418, 3002938045, 6866090880, 15609292379, 35299794600, 79443050541, 177989130174, 397124963671, 882642816697, 1954708794400
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 24 2022

Keywords

Comments

For m>0, Sum_{k=1..n} binomial(n,k) * sigma_m(k) ~ zeta(m+1) * n^m * 2^(n-m).

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(sigma[3](i)*binomial(n,i), i=1..n), n=1..60); # Ridouane Oudra, Oct 31 2022
  • Mathematica
    Table[Sum[Binomial[n, k] * DivisorSigma[3, k], {k, 1, n}], {n, 1, 40}]
  • PARI
    a(n) = sum(k=1, n, binomial(n,k) * sigma(k, 3)); \\ Michel Marcus, Jul 24 2022

Formula

a(n) ~ Pi^4 * n^3 * 2^(n-4) / 45.
a(n) = Sum_{i=1..n} Sum_{j=1..n} (i^3)*binomial(n,i*j). - Ridouane Oudra, Oct 31 2022

A356339 a(n) = Sum_{k=1..n} binomial(2*n, n-k) * sigma_2(k).

Original entry on oeis.org

1, 9, 55, 297, 1496, 7215, 33783, 154825, 698077, 3107424, 13690161, 59802471, 259377080, 1118176887, 4795381640, 20472223529, 87051685546, 368857919085, 1558036408998, 6562564601592, 27571934249754, 115574440020477, 483444570596465, 2018365519396135, 8411811012694246
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n, n-k]*DivisorSigma[2, k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*n, n-k) * sigma(k, 2)); \\ Michel Marcus, Aug 05 2022

Formula

a(n) ~ zeta(3) * n * 4^(n-1).

A280385 a(n) = Sum_{k=1..n} prime(k)^2*floor(n/prime(k)) .

Original entry on oeis.org

0, 4, 13, 17, 42, 55, 104, 108, 117, 146, 267, 280, 449, 502, 536, 540, 829, 842, 1203, 1232, 1290, 1415, 1944, 1957, 1982, 2155, 2164, 2217, 3058, 3096, 4057, 4061, 4191, 4484, 4558, 4571, 5940, 6305, 6483, 6512, 8193, 8255, 10104, 10229, 10263, 10796, 13005, 13018, 13067, 13096, 13394, 13567, 16376, 16389, 16535
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 01 2017

Keywords

Comments

Sum of all squares of prime divisors of all positive integers <= n.
Partial sums of A005063.

Examples

			For n = 6 the prime divisors of the first six positive integers are {0}, {2}, {3}, {2}, {5}, {2, 3} so a(6) = 0^2 + 2^2 + 3^2 + 2^2 + 5^2 + 2^2 + 3^2 = 55.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Prime[k]^2 Floor[n/Prime[k]], {k, 1, n}], {n, 55}]
    Table[Sum[DivisorSum[k, #1^2 &, PrimeQ[#1] &], {k, 1, n}], {n, 55}]
    nmax = 55; Rest[CoefficientList[Series[(1/(1 - x)) Sum[Prime[k]^2 x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x]]
  • PARI
    a(n) = sum(k=1, n, prime(k)^2 * (n\prime(k))); \\ Indranil Ghosh, Apr 03 2017
    
  • Python
    from sympy import prime
    print([sum([prime(k)**2 * (n//prime(k)) for k in range(1, n + 1)]) for n in range(1, 21)]) # Indranil Ghosh, Apr 03 2017

Formula

G.f.: (1/(1 - x))*Sum_{k>=1} prime(k)^2*x^prime(k)/(1 - x^prime(k)).
Previous Showing 21-30 of 32 results. Next