cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A218449 Gaussian binomial coefficient [2*n-1,n] for q=2, n>=0.

Original entry on oeis.org

1, 1, 7, 155, 11811, 3309747, 3548836819, 14877590196755, 246614610741341843, 16256896431763117598611, 4274137206973266943778085267, 4488323837657412597958687922896275, 18839183877670041942218307147122500601235
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2012

Keywords

Comments

Compare to: [x^n] Product_{k=0..n-1} 1+2^k*x = 2^(n*(n-1)/2).

Examples

			The coefficients in Product_{k=0..n-1} 1/(1 - 2^k*x) begin:
n=0: [(1)];
n=1: [1,(1), 1, 1, 1, 1, 1, 1, 1, 1, ...];
n=2: [1, 3,(7), 15, 31, 63, 127, 255, 511, 1023, ...];
n=3: [1, 7, 35,(155), 651, 2667, 10795, 43435, 174251, ...];
n=4: [1, 15, 155, 1395,(11811), 97155, 788035, 6347715, ...];
n=5: [1, 31, 651, 11811, 200787,(3309747), 53743987, ...];
n=6: [1, 63, 2667, 97155, 3309747, 109221651,(3548836819), ...];
n=7: [1, 127, 10795, 788035, 53743987, 3548836819, 230674393235,(14877590196755), ...]; ...
the coefficients in parenthesis give the initial terms of this sequence;
an adjacent diagonal forms the Gaussian binomial coefficients [2*n,n] for q=2:
[1, 3, 35, 1395, 200787, 109221651, 230674393235, ...] = A006098.
		

Crossrefs

Programs

  • Mathematica
    Table[QBinomial[2n-1, n, 2], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 12 2016 *)
  • PARI
    {a(n)=polcoeff(prod(k=0,n-1,1/(1-2^k*x +x*O(x^n))),n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = [x^n] Product_{k=0..n-1} 1/(1 - 2^k*x).
a(n) ~ c * 2^(n*(n-1)), where c = A065446. - Vaclav Kotesovec, Sep 22 2016

A306204 Decimal expansion of Product_{p>=3} (1+1/p) over the Mersenne primes.

Original entry on oeis.org

1, 5, 8, 5, 5, 5, 8, 8, 8, 7, 9, 2, 5, 6, 3, 8, 7, 7, 6, 9, 7, 8, 6, 3, 7, 0, 2, 3, 2, 1, 9, 2, 3, 8, 4, 7, 6, 0, 6, 9, 4, 0, 5, 8, 6, 7, 9, 4, 7, 0, 2, 8, 1, 1, 3, 2, 9, 8, 1, 2, 6, 7, 8, 9, 2, 8, 8, 5, 9, 7, 5, 4, 5, 7, 6, 7, 8, 5, 5, 6, 9, 0, 5, 3, 5, 0, 0, 7, 9, 1, 1, 7, 9, 9, 3, 5, 6, 1, 9, 5
Offset: 1

Views

Author

Tomohiro Yamada, Jan 29 2019

Keywords

Comments

This is equal to Product_{q>=1} (1-1/2^q)^(-1) over all q with 2^q - 1 a Mersenne prime.

Examples

			Decimal expansion of (4/3) * (8/7) * (32/31) * (128/127) * (8192/8191) * (131072/131071) * (524288/524287) * ... = 1.585558887...
		

Crossrefs

Cf. A065446 (the corresponding product over all Mersenne numbers, prime or composite).
Cf. A173898 (the sum of reciprocals of the Mersenne primes).
Cf. A065442 (the sum of reciprocals of the Mersenne numbers, prime or composite).
Cf. A046528.

Programs

  • PARI
    t=1.0;for(i=1,500,p=2^i-1;if(isprime(p),t=t*(p+1)/p))

Formula

Equals Sum_{n>=1} 1/A046528(n). - Amiram Eldar, Jan 06 2021

A330862 Decimal expansion of Product_{k>=1} (1 - 1/(-2)^k).

Original entry on oeis.org

1, 2, 1, 0, 7, 2, 4, 1, 3, 0, 3, 0, 1, 0, 5, 9, 1, 8, 0, 1, 3, 6, 1, 7, 2, 8, 5, 6, 1, 0, 5, 9, 0, 5, 0, 4, 6, 3, 6, 8, 0, 4, 1, 6, 3, 1, 1, 2, 3, 1, 3, 7, 6, 4, 3, 4, 7, 6, 1, 5, 9, 2, 4, 5, 5, 4, 0, 0, 0, 6, 8, 7, 5, 6, 5, 9, 1, 8, 4, 5, 0, 4, 9, 9, 1, 6, 5, 0, 7, 6, 1, 0, 1, 3, 3, 5, 5, 5, 3, 9, 5, 3, 9, 9, 6, 4, 6, 3, 3, 0, 9
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 28 2020

Keywords

Examples

			(1 + 1/2) * (1 - 1/2^2) * (1 + 1/2^3) * (1 - 1/2^4) * (1 + 1/2^5) * ... = 1.2107241303010591801361728561...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[QPochhammer[-1/2, -1/2], 10, 111] [[1]]
    N[QPochhammer[-2, 1/4]*QPochhammer[1/4]/3, 120] (* Vaclav Kotesovec, Apr 28 2020 *)
  • PARI
    prodinf(k=1, 1 - 1/(-2)^k) \\ Michel Marcus, Apr 28 2020

Formula

Equals Product_{k>=1} (4^k - 1)*(4^k + 2)/4^(2*k).
Equals exp(-Sum_{k>=1} A000203(k)/(k*(-2)^k)).

A356282 a(n) = Sum_{k=0..n} binomial(3*n, n-k) * p(k), where p(k) is the partition function A000041.

Original entry on oeis.org

1, 4, 23, 141, 888, 5675, 36602, 237563, 1548995, 10135554, 66504699, 437359454, 2881641263, 19016505326, 125664684700, 831400186740, 5506287269802, 36501297800013, 242167539749593, 1607851773270316, 10682384379036741, 71016046921543562, 472376627798814453
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 01 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[PartitionsP[k]*Binomial[3*n, n-k], {k, 0, n}], {n, 0, 30}]
  • PARI
    a(n) = sum(k=0, n, binomial(3*n, n-k)*numbpart(k)); \\ Michel Marcus, Aug 02 2022

Formula

a(n) ~ c * 3^(3*n + 1/2) / (sqrt(Pi*n) * 2^(2*n + 1)), where c = Sum_{j>=0} p(j)/2^j = A065446 = 3.4627466194550636115379573429...

A371747 Decimal expansion of Product_{k>=1} 1 / (1 - 1/4^k).

Original entry on oeis.org

1, 4, 5, 2, 3, 5, 3, 6, 4, 2, 4, 4, 9, 5, 9, 7, 0, 1, 5, 8, 3, 4, 7, 1, 3, 0, 2, 2, 4, 8, 5, 2, 7, 4, 8, 7, 3, 3, 6, 1, 2, 2, 7, 9, 7, 8, 8, 0, 7, 9, 2, 6, 3, 4, 9, 6, 2, 5, 3, 8, 2, 7, 1, 8, 4, 0, 3, 6, 8, 6, 3, 0, 0, 7, 8, 1, 9, 4, 0, 3, 1, 6, 1, 0, 1, 4, 0, 7, 2, 0, 6, 0, 1, 5, 3, 6, 2, 1, 2, 9
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 05 2024

Keywords

Examples

			1.4523536424495970158347130224852748733612...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/QPochhammer[1/4, 1/4], 10, 100][[1]]

Formula

Equals 1 / A100221.

A371750 Decimal expansion of Product_{k>=1} 1 / (1 - 1/5^k).

Original entry on oeis.org

1, 3, 1, 5, 2, 1, 3, 5, 5, 5, 7, 3, 5, 3, 4, 5, 2, 1, 9, 3, 0, 8, 0, 9, 4, 5, 8, 5, 1, 0, 0, 9, 6, 1, 7, 8, 4, 4, 0, 1, 4, 7, 9, 8, 3, 6, 1, 2, 3, 8, 1, 3, 1, 5, 3, 4, 7, 8, 8, 0, 1, 3, 6, 3, 3, 5, 1, 5, 3, 3, 6, 7, 1, 7, 5, 1, 3, 5, 9, 4, 5, 3, 1, 7, 0, 7, 1, 7, 1, 4, 8, 6, 2, 3, 3, 2, 8, 1, 8, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 05 2024

Keywords

Examples

			1.3152135557353452193080945851009617844...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/QPochhammer[1/5, 1/5], 10, 100][[1]]

Formula

Equals 1 / A100222.

A006099 Gaussian binomial coefficient [ n, n/2 ] for q=2.

Original entry on oeis.org

1, 1, 3, 7, 35, 155, 1395, 11811, 200787, 3309747, 109221651, 3548836819, 230674393235, 14877590196755, 1919209135381395, 246614610741341843, 63379954960524853651, 16256896431763117598611, 8339787869494479328087443, 4274137206973266943778085267
Offset: 0

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. A065446.

Programs

  • Mathematica
    Table[QBinomial[n,Floor[n/2],2],{n,0,20}] (* Harvey P. Dale, Sep 07 2013 *)

Formula

a(n) ~ c * 2^(n^2/4), where c = 1 / QPochhammer[1/2, 1/2] = A065446 = 3.46274661945506361153795734292443116454... if n is even, and c = 2^(-1/4) / QPochhammer[1/2, 1/2] = 2^(-1/4) * A065446 = 2.911811219231681420726836976930855961516... if n is odd. - Vaclav Kotesovec, Jun 22 2014

Extensions

More terms from Harvey P. Dale, Sep 07 2013

A300581 Expansion of Product_{k>=1} 1/(1 - 2^(k+1)*x^k).

Original entry on oeis.org

1, 4, 24, 112, 544, 2368, 10624, 44800, 190976, 791552, 3282944, 13414400, 54829056, 222117888, 899383296, 3625123840, 14601027584, 58659700736, 235555782656, 944552017920, 3786334535680, 15166305468416, 60736264994816, 243129089261568, 973133053952000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[1/(1-2^(k+1)*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 4^n, where c = A065446 = 1/QPochhammer(1/2) = 3.46274661945506361...

A300583 Expansion of Product_{k>=1} 1 / (1 - 2*3^k*x^k).

Original entry on oeis.org

1, 6, 54, 378, 2754, 17982, 121014, 765450, 4894506, 30429918, 189311094, 1160312850, 7113869226, 43228473822, 262556300286, 1587419581410, 9590551158474, 57795130268694, 348125978482686, 2093918636332530, 12590534397102930, 75647788993941174
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[1/(1-2*3^k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 6^n, where c = A065446 = 1/QPochhammer(1/2) = 3.46274661945506361153...

A330863 Decimal expansion of Product_{k>=1} (1 + 1/(-2)^k).

Original entry on oeis.org

5, 6, 8, 6, 9, 8, 9, 4, 6, 2, 6, 5, 4, 2, 8, 5, 0, 5, 9, 5, 4, 9, 7, 6, 7, 3, 7, 0, 7, 4, 4, 4, 4, 6, 5, 4, 2, 9, 0, 8, 5, 2, 4, 5, 1, 3, 8, 9, 3, 5, 9, 0, 2, 9, 3, 1, 9, 3, 4, 4, 0, 4, 6, 0, 1, 8, 3, 5, 3, 5, 6, 3, 2, 3, 0, 9, 1, 2, 6, 4, 0, 9, 6, 1, 4, 6, 4, 4, 1, 1, 7, 3, 0, 6, 1, 4, 8, 6, 0, 4, 8, 0, 2, 7, 2, 6, 9, 4, 1, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 28 2020

Keywords

Examples

			(1 - 1/2) * (1 + 1/2^2) * (1 - 1/2^3) * (1 + 1/2^4) * (1 - 1/2^5) * ... = 0.568698946265428505954976737...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[QPochhammer[-1, -1/2]/2, 10, 110] [[1]]
    N[3/QPochhammer[-2, 1/4], 120] (* Vaclav Kotesovec, Apr 28 2020 *)
  • PARI
    prodinf(k=1, 1 + 1/(-2)^k) \\ Michel Marcus, Apr 28 2020

Formula

Equals Product_{k>=1} 1/(1 + 1/2^(2*k-1)).
Equals exp(Sum_{k>=1} A000593(k)/(k*(-2)^k)).
From Peter Bala, Dec 15 2020: (Start)
Constant C = (2/3) - (1/3)*Sum_{n >= 0} (-1)^n * 2^(n^2)/( Product_{k = 1..n+1} 4^k - 1 ).
C = Sum_{n >= 0} 1/( Product_{k = 1..n} (-2)^k - 1 ) = 1 - 1/3 - 1/9 + 1/81 + 1/1215 - - + + ... = Sum_{n >= 0} 1/A216206(n).
C = 1 + Sum_{n >= 0} (-1/2)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
3*C = 2 - Sum_{n >= 0} (1/4)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
9*C = 5 - Sum_{n >= 0} (-1/8)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
81*C = 46 + Sum_{n >= 0} (1/16)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
1215*C = 691 + Sum_{n >= 0} (-1/32)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
The sequence [1, 2, 5, 46, 691, ...] is the sequence of numerators of the partial sums of the series Sum_{n >= 0} 1/A216206(n). (End)
Previous Showing 11-20 of 25 results. Next