cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 46 results. Next

A378249 Least perfect power > prime(n).

Original entry on oeis.org

4, 4, 8, 8, 16, 16, 25, 25, 25, 32, 32, 49, 49, 49, 49, 64, 64, 64, 81, 81, 81, 81, 100, 100, 100, 121, 121, 121, 121, 121, 128, 144, 144, 144, 169, 169, 169, 169, 169, 196, 196, 196, 196, 196, 216, 216, 216, 225, 243, 243, 243, 243, 243, 256, 289, 289, 289
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.
Which terms appear only once? Just 128, 225, 256, 64009, 1295044?

Examples

			The first number line below shows the perfect powers. The second shows each prime.
-1-----4-------8-9------------16----------------25--27--------32------36------------------------49--
===2=3===5===7======11==13======17==19======23==========29==31==========37======41==43======47======
		

Crossrefs

A version for prime powers (but starting with prime(k) + 1) is A345531.
Positions of last appearances are A377283, complement A377436.
Restriction of A377468 to the primes, for prime powers A000015.
The opposite is A378035, restriction of A081676.
The union is A378250.
Run lengths are A378251.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289, seconds A376559.
A007916 lists numbers that are not perfect powers, differences A375706, seconds A376562.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A131605 lists perfect powers that are not prime powers.
A377432 counts perfect powers between primes, zeros A377436, postpositives A377466.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Table[NestWhile[#+1&,Prime[n],radQ[#]&],{n,100}]
  • PARI
    f(p) = p++; while(!ispower(p), p++); p;
    lista(nn) = apply(f, primes(nn)); \\ Michel Marcus, Dec 19 2024

A378371 Distance between n and the least non prime power >= n, allowing 1.

Original entry on oeis.org

0, 4, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2024

Keywords

Comments

Non prime powers allowing 1 (A361102) are numbers that are not a prime power (A246655), namely 1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, ...

Examples

			The least non prime power >= 4 is 6, so a(4) = 2.
		

Crossrefs

Sequences obtained by adding n to each term are placed in parentheses below.
For prime we have A007920 (A151800), strict A013632.
For composite we have A010051 (A113646 except initial terms).
For perfect power we have A074984 (A377468)
For squarefree we have A081221 (A067535).
For nonsquarefree we have (A120327).
For non perfect power we have A378357 (A378358).
The opposite version is A378366 (A378367).
For prime power we have A378370, strict A377282 (A000015).
This sequence is A378371 (A378372).
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime powers, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
Prime powers between primes: A053607, A080101, A304521, A366833, A377057.

Programs

  • Mathematica
    Table[NestWhile[#+1&,n,PrimePowerQ[#]&]-n,{n,100}]

Formula

a(n) = A378372(n) - n.

A378372 Least non prime power >= n, allowing 1.

Original entry on oeis.org

1, 6, 6, 6, 6, 6, 10, 10, 10, 10, 12, 12, 14, 14, 15, 18, 18, 18, 20, 20, 21, 22, 24, 24, 26, 26, 28, 28, 30, 30, 33, 33, 33, 34, 35, 36, 38, 38, 39, 40, 42, 42, 44, 44, 45, 46, 48, 48, 50, 50, 51, 52, 54, 54, 55, 56, 57, 58, 60, 60, 62, 62, 63, 65, 65, 66, 68
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2024

Keywords

Comments

Non prime powers allowing 1 (A361102) are numbers that are not a prime power (A246655), namely 1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, ...

Examples

			The least non prime power >= 4 is 6, so a(4) = 6.
		

Crossrefs

Sequences obtained by subtracting n from each term are placed in parentheses below.
For prime power we have A000015 (A378370).
For squarefree we have A067535 (A081221).
For composite we have A113646 (A010051).
For nonsquarefree we have A120327.
For prime we have A151800 (A007920), strict (A013632).
Run-lengths are 1 and A375708.
For perfect power we have A377468 (A074984).
For non-perfect power we have A378358 (A378357).
The opposite is A378367, distance A378366.
This sequence is A378372 (A378371).
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime powers, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
Prime powers between primes: A053607, A080101, A304521, A366833, A377057.

Programs

  • Mathematica
    Table[NestWhile[#+1&,n,PrimePowerQ[#]&],{n,100}]

Formula

a(n) = A378371(n) + n.

A366835 In the pair (A246655(n), A246655(n+1)), how many primes are there?

Original entry on oeis.org

2, 1, 1, 2, 1, 0, 1, 2, 1, 1, 2, 2, 1, 0, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2
Offset: 1

Views

Author

Paolo Xausa, Oct 25 2023

Keywords

Comments

First 0 terms appear at n = 6, 14, 41, 359, 3589, corresponding to consecutive prime powers (8,9), (25,27), (121,125), (2187,2197) and (32761,32768), respectively (cf. A068315 and A068435).
There cannot be primes strictly between consecutive prime powers, so we get the same result considering the whole interval (not just the pair). - Gus Wiseman, Dec 25 2024

Examples

			a(1) = 2 because in the first prime power pair (2 and 3) there are two primes.
a(14) = 0 because in the 14th prime power pair (25 and 27) there are no primes.
		

Crossrefs

For perfect powers instead of prime powers we have A080769.
Positions of 1 are A379155, indices of A379157.
Positions of 0 are A379156, indices of A068315.
Positions of 2 are A379158, indices of A379541.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A080101 and A366833 count prime powers between primes, see A053607, A304521.
A246655 lists the prime powers, differences A057820.

Programs

  • Mathematica
    With[{upto=500},Map[Count[#,_?PrimeQ]&,Partition[Select[Range[upto],PrimePowerQ],2,1]]] (* Considers prime powers up to 500 *)
  • PARI
    lista(nn) = my(v=[p| p <- [1..nn], isprimepower(p)]); vector(#v-1, k, isprime(v[k]) + isprime(v[k+1])); \\ Michel Marcus, Oct 26 2023

A377467 Number of perfect-powers x in the range 2^n < x < 2^(n+1).

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 4, 6, 7, 10, 15, 23, 31, 41, 60, 81, 117, 165, 230, 321, 452, 634, 891, 1252, 1766, 2486, 3504, 4935, 6958, 9815, 13849, 19537, 27577, 38932, 54971, 77640, 109667, 154921, 218878, 309276, 437046, 617657, 872967, 1233895, 1744152, 2465546, 3485477
Offset: 0

Views

Author

Gus Wiseman, Nov 04 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.
Also the number of perfect-powers, except for powers of 2, with n bits.

Examples

			The perfect-powers in each prescribed range (rows):
    .
    .
    .
    9
   25   27
   36   49
   81  100  121  125
  144  169  196  216  225  243
  289  324  343  361  400  441  484
  529  576  625  676  729  784  841  900  961 1000
The binary expansions for n >= 3 (columns):
    1001  11001  100100  1010001  10010000  100100001
          11011  110001  1100100  10101001  101000100
                         1111001  11000100  101010111
                         1111101  11011000  101101001
                                  11100001  110010000
                                  11110011  110111001
                                            111100100
		

Crossrefs

The version for squarefree numbers is A077643.
The version for prime-powers is A244508.
For primes instead of powers of 2 we have A377432, zeros A377436.
Including powers of 2 in the range gives A377435.
The version for non-perfect-powers is A377701.
The union of all numbers counted is A377702.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289.
A007916 lists the non-perfect-powers, differences A375706.
A081676 gives the greatest perfect-power <= n.
A131605 lists perfect-powers that are not prime-powers.
A377468 gives the least perfect-power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Table[Length[Select[Range[2^n+1,2^(n+1)-1],perpowQ]],{n,0,15}]
  • Python
    from sympy import mobius, integer_nthroot
    def A377467(n):
        def f(x): return int(1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        return f((1<Chai Wah Wu, Nov 05 2024

Formula

For n != 1, a(n) = A377435(n) - 1.

Extensions

a(26)-a(46) from Chai Wah Wu, Nov 05 2024

A378356 Prime index of the next prime after the n-th perfect power.

Original entry on oeis.org

1, 3, 5, 5, 7, 10, 10, 12, 12, 16, 19, 23, 26, 31, 31, 32, 35, 40, 45, 48, 49, 54, 55, 62, 67, 69, 73, 79, 86, 93, 98, 100, 106, 115, 123, 130, 138, 147, 155, 163, 169, 173, 182, 192, 201, 211, 218, 220, 229, 241, 252, 264, 270, 275, 284, 296, 307, 310, 320
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2024

Keywords

Crossrefs

First differences are A080769.
Union is A378365.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A377432 counts perfect powers between primes, see A377434, A377436, A377466.
A378249 gives the least perfect power > prime(n), restriction of A377468.

Programs

  • Mathematica
    Table[PrimePi[NextPrime[n]],{n,Select[Range[1000],perpowQ]}]

Formula

a(n) = A000720(A001597(n)) + 1.

A378358 Least non-perfect-power >= n.

Original entry on oeis.org

2, 2, 3, 5, 5, 6, 7, 10, 10, 10, 11, 12, 13, 14, 15, 17, 17, 18, 19, 20, 21, 22, 23, 24, 26, 26, 28, 28, 29, 30, 31, 33, 33, 34, 35, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 65, 66, 67
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2024

Keywords

Comments

Perfect-powers (A001597) are 1 and numbers with a proper integer root, complement A007916.

Crossrefs

The version for prime-powers is A000015, for non-prime-powers A378372.
The union is A007916, complement A001597.
The version for nonsquarefree numbers is A067535, negative A120327 (subtract A378369).
The version for composite numbers is A113646.
The version for prime numbers is A159477.
The run-lengths are A375706.
Terms appearing only once are A375738, multiple times A375703.
The version for perfect-powers is A377468.
Subtracting from n gives A378357.
The opposite version is A378363, for perfect-powers A081676.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289.
A007916 lists the non-perfect-powers, differences A375706.
A069623 counts perfect-powers <= n.
A076411 counts perfect-powers < n.
A131605 lists perfect-powers that are not prime-powers.
A377432 counts perfect-powers between primes, zeros A377436.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Table[NestWhile[#+1&,n,perpowQ[#]&],{n,100}]
  • Python
    from sympy import mobius, integer_nthroot
    def A378358(n):
        def f(x): return int(1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        a = max(1,n-f(n-1))
        m, k = a, f(a)+a
        while m != k: m, k = k, f(k)+a
        return m # Chai Wah Wu, Nov 26 2024
    
  • Python
    from sympy import perfect_power
    def A378358(n): return n if n>1 and perfect_power(n)==False else n+1 if perfect_power(n+1)==False else n+2 # Chai Wah Wu, Nov 27 2024

Formula

a(n) = n - A378357(n).

A378370 Distance between n and the least prime power >= n, allowing 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 0, 3, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 4, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 3, 2, 1, 0, 1, 0, 5, 4, 3, 2, 1, 0, 1, 0, 1, 0, 5, 4, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 27 2024

Keywords

Comments

Prime powers allowing 1 are listed by A000961.

Crossrefs

Sequences obtained by adding n to each term are placed in parentheses below.
For prime instead of prime power we have A007920 (A007918), strict A013632.
For perfect power we have A074984 (A377468), opposite A069584 (A081676).
For squarefree we have A081221 (A067535).
The restriction to the prime numbers is A377281 (A345531).
The strict version is A377282 = a(n) + 1.
For non prime power instead of prime power we have A378371 (A378372).
The opposite version is A378457, strict A276781.
A000015 gives the least prime power >= n, opposite A031218.
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime powers, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
A151800 gives the least prime > n.
Prime-powers between primes: A053607, A080101, A304521, A366833, A377057.

Programs

  • Mathematica
    Table[NestWhile[#+1&,n,#>1&&!PrimePowerQ[#]&]-n,{n,100}]

Formula

a(n) = A000015(n) - n.
a(n) = A377282(n - 1) - 1 for n > 1.

A379155 Numbers k such that there is a unique prime between the k-th and (k+1)-th prime powers (A246655).

Original entry on oeis.org

2, 3, 5, 7, 9, 10, 13, 15, 17, 18, 22, 23, 26, 27, 31, 32, 40, 42, 43, 44, 52, 53, 67, 68, 69, 70, 77, 78, 85, 86, 90, 91, 116, 117, 119, 120, 135, 136, 151, 152, 169, 170, 186, 187, 197, 198, 243, 244, 246, 247, 291, 292, 312, 313, 339, 340, 358, 360, 362
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2024

Keywords

Comments

Numbers k such that exactly one of A246655(k) and A246655(k+1) is prime. - Robert Israel, Jan 22 2025
The prime powers themselves are: 3, 4, 7, 9, 13, 16, 23, 27, 31, 32, 47, 49, 61, 64, ...

Examples

			The 4th and 5th prime powers are 5 and 7, with interval (5,6,7) containing two primes, so 4 is not in the sequence.
The 13th and 14th prime powers are 23 and 25, with interval (23,24,25) containing only one prime, so 13 is in the sequence.
The 18th and 19th prime powers are 32 and 37, with interval (32,33,34,35,36,37) containing just one prime 37, so 18 is in the sequence.
		

Crossrefs

These are the positions of 1 in A366835, for perfect powers A080769.
For perfect powers instead of prime powers we have A378368.
For no primes we have A379156, for perfect powers A274605.
The prime powers themselves are A379157, for previous A175106.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A246655 lists the prime powers.
A366833 counts prime powers between primes, see A053607, A304521.

Programs

  • Maple
    N:= 1000: # for terms k where A246655(k+1) <+ N
    P:= select(isprime,[2,seq(i,i=3..N,2)]):
    S:= convert(P,set):
    for p in P while p^2 <= N do
      S:= S union {seq(p^j,j=2..ilog[p](N))}
    od:
    PP:= sort(convert(S,list)):
    state:= 1: Res:= NULL:
    ip:= 2:
    for i from 2 to nops(PP) do
      if PP[i] = P[ip] then
        if state = 0 then Res:= Res,i-1 fi;
        state:= 1;
        ip:= ip+1;
      else
        if state = 1 then Res:= Res,i-1 fi;
        state:= 0;
      fi
    od:
    Res; # Robert Israel, Jan 22 2025
  • Mathematica
    v=Select[Range[100],PrimePowerQ];
    Select[Range[Length[v]-1],Length[Select[Range[v[[#]],v[[#+1]]],PrimeQ]]==1&]

Formula

A246655(a(n)) = A379157(n).

A068315 For numbers k such that A025474(k) > 1 and A025474(k+1) > 1, sequence gives A000961(k).

Original entry on oeis.org

8, 25, 121, 2187, 32761
Offset: 1

Views

Author

Naohiro Nomoto, Mar 08 2002

Keywords

Comments

Equivalently, prime powers (either A000961 or A246655) q such that q and the next prime power are both composite numbers. - Paolo Xausa, Oct 25 2023

Examples

			The interval (121,122,123,124,125) contains no primes, so 121 is in the sequence. - _Gus Wiseman_, Dec 24 2024
		

Crossrefs

Bisection of A068435.
For perfect powers instead of prime powers we have A116086, indices A274605.
The position of a(k) in the prime powers A246655 is A379156(k).
For just one prime we have A379157, indices A379155.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A031218 gives the greatest prime power <= n.
A046933 gives run-lengths of composites between primes.
A065514 gives the greatest prime power < prime(n), difference A377289.
A246655 lists the prime powers, differences A057820.
A366833 counts prime powers between primes, see A053607, A304521.
A366835 counts primes between prime powers.

Programs

  • Mathematica
    With[{upto=33000},Map[First,Select[Partition[Select[Range[upto],PrimePowerQ],2,1],NoneTrue[#,PrimeQ]&]]] (* Paolo Xausa, Oct 25 2023 *)

Formula

a(n) = A246655(A379156(n)). - Gus Wiseman, Dec 24 2024

Extensions

Definition corrected by Jinyuan Wang, Sep 05 2020
Previous Showing 21-30 of 46 results. Next