cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 63 results. Next

A114415 Records in 5-almost prime gaps ordered by merit.

Original entry on oeis.org

16, 24, 28, 42, 56, 70
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Comments

Next term, if it exists, is associated with indices above 100000 in A114405 and A014614. - R. J. Mathar, May 10 2007

Examples

			Records defined in terms of A114405 and A014614:
  n  A114405(n)  A114405(n)/log_10(A014614(n))
  =  ==========  =============================
  1      16      16/log_10(32)  = 10.6301699
  2      24      24/log_10(48)  = 14.2751673
  3      8       8/log_10(72)   = 4.30725248
  4      28      28/log_10(80)  = 14.7129144
  5      4       4/log_10(108)  = 1.96712564
  6      8       8/log_10(112)  = 3.90392819
  7      42      42/log_10(120) = 20.2002592
  8      6       6/log_10(168)  = 2.69625443
  ...
  22     56      56/log_10(312) = 22.4524976
		

Crossrefs

Programs

  • Maple
    A014614 := proc(nmax) local a,i; a := [] ; i := 1 ; while nops(a) < nmax do if numtheory[bigomega](i) = 5 then a := [op(a),i] ; fi ; i := i+1 ; end: a ; end: A114405 := proc(a014614) local a,i; a := [] ; for i from 2 to nops(a014614) do a := [op(a), op(i,a014614)-op(i-1,a014614)] ; od ; a ; end: a014614 := A014614(100000) : a114405 := A114405(a014614) : Digits := 30 : rec := -1 : for i from 1 to nops(a114405) do if evalf(a114405[i]/log(a014614[i])) > rec then printf("%d, ",a114405[i]) ; rec := evalf(a114405[i]/log(a014614[i])) ; fi ; od ; # R. J. Mathar, May 10 2007

Formula

a(n) = records in A114405(n)/log_10(A014614(n)) = records in (A014614(n+1) - A014614(n))/log_10(A014614(n)).

Extensions

a(6) from R. J. Mathar, May 10 2007

A131749 Triangle of successive absolute differences of semiprimes.

Original entry on oeis.org

4, 2, 6, 1, 3, 9, 1, 2, 1, 10, 0, 1, 3, 4, 14, 1, 1, 0, 3, 1, 15, 0, 1, 2, 2, 5, 6, 21, 1, 1, 0, 2, 0, 5, 1, 22, 1, 0, 1, 1, 3, 3, 2, 3, 25, 1, 0, 0, 1, 0, 3, 0, 2, 1, 26, 1, 0, 0, 0, 1, 1, 4, 4, 6, 7, 33, 1, 0, 0, 0, 0, 1, 0, 4, 0, 6, 1, 34, 0, 1, 1, 1, 1, 1, 2, 2, 6, 6, 0, 1, 35
Offset: 1

Views

Author

Jonathan Vos Post, Oct 23 2007

Keywords

Comments

Semiprime analog of A036262. The conjecture analogous to Gilbreath's conjecture is that the leading term (after the second row) is always 0 or 1. First diagonal is semiprimes (A001358). Second diagonal is first differences of semiprimes (A065516).

Examples

			Table begins:
4  6  9 10 14 15 21 22 25 26 33 34 35 38 39 46 49 51 55 57 58 62 65 69 74 77 82 85
2  3  1  4  1  6  1  3  1  7  1  1  3  1  7  3  2  4  2  1  4  3  4  5  3  5  3
1  2  3  3  5  5  2  2  6  6  0  2  2  6  4  1  2  2  1  3  1  1  1  2  2  2
1  1  0  2  0  3  0  4  0  6  2  0  4  2  3  1  0  1  2  2  0  0  1  0  0
0  1  2  2  3  3  4  4  6  4  2  4  2  1  2  1  1  1  0  2  0  1  1  0
1  1  0  1  0  1  0  2  2  2  2  2  1  1  1  0  0  1  2  2  1  0  1
0  1  1  1  1  1  2  0  0  0  0  1  0  0  1  0  1  1  0  1  1  1
1  0  0  0  0  1  2  0  0  0  1  1  0  1  1  1  0  1  1  0  0
1  0  0  0  1  1  2  0  0  1  0  1  1  0  0  1  1  0  1  0
1  0  0  1  0  1  2  0  1  1  1  0  1  0  1  0  1  1  1
1  0  1  1  1  1  2  1  0  0  1  1  1  1  1  1  0  0
1  1  0  0  0  1  1  1  0  1  0  0  0  0  0  1  0
0  1  0  0  1  0  0  1  1  1  0  0  0  0  1  1
1  1  0  1  1  0  1  0  0  1  0  0  0  1  0
0  1  1  0  1  1  1  0  1  1  0  0  1  1
1  0  1  1  0  0  1  1  0  1  0  1  0
1  1  0  1  0  1  0  1  1  1  1  1
0  1  1  1  1  1  1  0  0  0  0
1  0  0  0  0  0  1  0  0  0
1  0  0  0  0  1  1  0  0
1  0  0  0  1  0  1  0
1  0  0  1  1  1  1
1  0  1  0  0  0
1  1  1  0  0
0  0  1  0
0  1  1
1  0
1
etc.
		

Crossrefs

Programs

  • Mathematica
    SemiPrimePi[n_] := Sum[ PrimePi[n/Prime[i]] - i + 1, {i, PrimePi[ Sqrt[n]]}]; SemiPrime[n_] := Block[{e = Floor[Log[2, n] + 1], a, b}, a = 2^e; Do[b = 2^p; While[SemiPrimePi@a < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; t[0, n_] := SemiPrime[n]; t[r_, c_] := Abs[t[r - 1, c] - t[r - 1, c + 1]]; Table[t[r - c, c], {r, 13}, {c, r}] // Flatten
    (* to construct the table as shown *) mx = 13; Table[t[r, c], {r, 0, mx - 1}, {c, mx - r}] // TableForm (* Robert G. Wilson v, Jun 13 2018 *)

A264046 Numbers k such that k and k+6 are consecutive semiprimes.

Original entry on oeis.org

15, 123, 365, 371, 505, 545, 573, 591, 649, 707, 807, 843, 943, 1067, 1159, 1247, 1357, 1405, 1529, 1555, 1633, 1739, 1745, 1829, 1843, 1897, 1909, 1985, 2149, 2159, 2209, 2285, 2329, 2353, 2363, 2407, 2413, 2463, 2501, 2643, 2773, 2779
Offset: 1

Views

Author

Zak Seidov, Nov 02 2015

Keywords

Comments

Note that a(1) = 15 = A131109(k=6).

Examples

			15 = A001358(6) and 21 = A001358(7).
		

Crossrefs

Programs

  • Mathematica
    Select[Partition[Select[Range[3000],PrimeOmega[#]==2&],2,1],#[[2]]-#[[1]]==6&][[;;,1]] (* Harvey P. Dale, Dec 24 2023 *)
  • PARI
    is(n)=if(bigomega(n)!=2 || bigomega(n+6)!=2, return(0)); for(i=1,5,if(bigomega(n+i)==2, return(0))); 1 \\ Charles R Greathouse IV, Nov 02 2015

A114058 Start of record gap in even semiprimes (A100484).

Original entry on oeis.org

4, 6, 14, 46, 178, 226, 1046, 1774, 2258, 2654, 19102, 31366, 39218, 62794, 311842, 721306, 740522, 984226, 2699066, 2714402, 4021466, 9304706, 34103414, 41662646, 94653386, 244329494, 379391318, 383825566, 774192266
Offset: 1

Views

Author

Jonathan Vos Post, Feb 02 2006

Keywords

Comments

5 of the first 6 values of record gaps in even semiprimes are also record merits = (A100484(k+1)-A100484(k))/log_10(A100484(k)), namely: (6 - 4) / log_10(4) = 3.32192809; (10 - 6) / log_10(6) = 5.14038884; (22 - 14) / log_10(14) = 6.98002296; (58 - 46) / log_10(46) = 7.21692586; (254 - 226) / log_10(226) = 11.8940995. It is easy to prove that there are gaps of arbitrary length in even semiprimes (A100484), as 2*(n!+2), 2*(n!+3), 2*(n!+4), ..., 2*(n!+n) gives (n-1) consecutive even nonsemiprimes. Can we prove that there are gaps of arbitrary length in odd semiprimes (A046315) and in semiprimes (A001358)?
For every n, a(n) = 2*A002386(n). - John W. Nicholson, Jul 26 2012

Examples

			gap[a(1)] = A100484(2)-A100484(1) = 6 - 4 = 2.
gap[a(2)] = A100484(3)-A100484(2) = 10 - 6 = 4.
gap[a(3)] = A100484(5)-A100484(4) = 22 - 14 = 8.
gap[a(4)] = A100484(10)-A100484(9) = 58 - 46 = 12.
gap[a(5)] = A100484(25)-A100484(24) = 194 - 178 = 16.
gap[a(6)] = A100484(31)-A100484(30) = 254 - 226 = 28.
		

Crossrefs

Cf. A001358, A046315, A065516, A085809, A100484, A114412, A114021. Maximal gap small prime A002386.

Programs

  • Mathematica
    f[n_] := Block[{k = n + 2}, While[ Plus @@ Last /@ FactorInteger@k != 2, k += 2]; k]; lst = {}; d = 0; a = b = 4; Do[{a, b} = {b, f[a]}; If[b - a > d, d = b - a; AppendTo[lst, a]], {n, 10^8}]; lst (* Robert G. Wilson v *)

Formula

a(n) = A100484(k) such that A100484(k+1)-A100484(k) is a record.

Extensions

a(7)-a(25) from Robert G. Wilson v, Feb 03 2006
a(26)-a(31) from Donovan Johnson, Mar 14 2010

A114417 Records in 7-almost prime gaps, ordered by merit.

Original entry on oeis.org

64, 96, 112, 168, 210, 280
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			Records defined in terms of A114407 and A046308:
n A114407(n) A114407(n)/log(A046308(n))
1 64 64/log 128 = 30.371914
2 96 96/log 192 = 42.0443868
3 32 32/log 288 = 13.0113433
4 112 112/log 320 = 44.7079021
5 16 16/log 432 = 6.07099172
6 32 32/log 448 = 12.0696509
7 168 168/log 480 = 62.6575474
8 24 24/log 648 = 8.53614076
		

Crossrefs

Formula

a(n) = Records in A114417(n)/log(A046308(n)) = Records in (A046308(n+1) - A046308(n))/log(A046308(n)).

Extensions

a(5)-a(6) from Donovan Johnson, Feb 17 2010

A114418 Records in 8-almost prime gaps ordered by merit.

Original entry on oeis.org

128, 192, 224, 336, 420, 560
Offset: 1

Views

Author

Jonathan Vos Post, Dec 03 2005

Keywords

Examples

			Records defined in terms of A114408 and A046310:
n A114418(n) A114418(n)/log(A046310(n)).
1 128 128/log 256 = 53.1508495
2 192 192/log 384 = 74.2938824
3 64 64/log 576 = 23.1848568
4 224 224/log 640 = 79.8238182
5 32 32/log 864 = 10.8972758
6 64 64/log 896 = 21.6779549
7 336 336/log 960 = 112.665809
8 48 48/log 1296 = 15.4211665
22 420 420/log 2496 = 123.629603
		

Crossrefs

Formula

a(n) = records in A114418(n)/log(A046310(n)) = records in (A046310(n+1) - A046310(n))/log(A046310(n)).

Extensions

Offset corrected and a(6) from Donovan Johnson, Feb 17 2010

A123386 Largest difference between successive semiprimes up to 10^n inclusive.

Original entry on oeis.org

3, 7, 14, 24, 38, 47, 74, 74, 95, 112, 146, 163, 174
Offset: 1

Views

Author

Alexander Adamchuk, Nov 09 2006

Keywords

Comments

There are 4 semiprimes up to 10^1 {4, 6, 9, 10}. The differences between successive semiprimes are {2, 3, 1}. Thus a(1) = Max[ {2, 3, 1} ] = 3.

Crossrefs

Programs

  • PARI
    A001358(prev)={ local(a=prev+1) ; while(bigomega(a)!=2, a++ ; ) ; return(a) ; }
    A123386(n)={ local(sp1=4,sp2=6,a=2) ; while(sp2<=10^n, a=max(a,sp2-sp1) ; sp1=sp2 ; sp2=A001358(sp1) ; ) ; return(a) ; }
    { for(n=1,13, print(A123386(n)) ; ) ; } \\ 2 more terms from R. J. Mathar, Jan 17 2008

Extensions

2 more term from R. J. Mathar, Jan 17 2008
a(8)-a(9) from Donovan Johnson, Sep 05 2008
a(10)-a(11) from Donovan Johnson, Apr 14 2010
a(12)-a(13) from Donovan Johnson, Sep 20 2012

A135406 Sum of squares of gaps between consecutive semiprimes.

Original entry on oeis.org

4, 13, 14, 30, 31, 67, 68, 77, 78, 127, 128, 129, 138, 139, 188, 197, 201, 217, 221, 222, 238, 247, 263, 288, 297, 322, 331, 332, 333, 349, 353, 354, 355, 476, 501, 517, 526, 527, 531, 532, 533, 569, 585, 586, 635, 636, 637, 641, 642, 723, 732, 733, 737, 762
Offset: 1

Views

Author

Jonathan Vos Post, Dec 09 2007

Keywords

Comments

This is to semiprimes A001358 as A074741 is to primes A000040. What is the semiprime analog of D. R. Heath-Brown's conjecture: Sum_{prime(n)<=N} (prime(n)-prime(n-1))^2 ~ 2*N*log(N) and Marek Wolf's conjecture: Sum_{prime(n)A000720(n).

Examples

			a(10) = (6-4)^2 + (9-6)^2 + (10-9)^2 + (14-10)^2 + (15-14)^2 + (21-15)^2 + (22-21)^2 + (25-22)^2 + (26-25)^2 + (33-26)^2 = (2^2) + (3^2) + (1^2) + (4^2) + (1^2) + (6^2) + (1^2) + (3^2) + (1^2) + (7^2) = 127.
		

Crossrefs

Programs

  • Maple
    A001358 := proc(n) option remember ; local a ; if n = 1 then 4; else for a from A001358(n-1)+1 do if numtheory[bigomega](a) = 2 then RETURN(a) ; fi ; od: fi ; end: A065516 := proc(n) A001358(n+1)-A001358(n) ; end: A135406 := proc(n) add( (A065516(k))^2,k=1..n) ; end: seq(A135406(n),n=1..80) ; # R. J. Mathar, Jan 07 2008
  • Mathematica
    Accumulate[Differences[Select[Range[200],PrimeOmega[#]==2&]]^2] (* Harvey P. Dale, Mar 05 2015 *)

Formula

a(n) = SUM[k=1..n] A065516(k)^2 = SUM[k=1..n] (A001358(n+1) - A001358(n))^2.

Extensions

More terms from R. J. Mathar, Jan 07 2008

A137462 a(n) + a(n-1) = n-th semiprime.

Original entry on oeis.org

1, 3, 3, 6, 4, 10, 5, 16, 6, 19, 7, 26, 8, 27, 11, 28, 18, 31, 20, 35, 22, 36, 26, 39, 30, 44, 33, 49, 36, 50, 37, 54, 39, 55, 40, 66, 45, 70, 48, 71, 50, 72, 51, 78, 55, 79, 62, 80, 63, 82, 64, 91, 67, 92, 69, 97, 72, 105, 73, 110, 75, 112, 82, 119, 83, 120, 85, 121, 88, 125
Offset: 0

Views

Author

Jonathan Vos Post, Apr 19 2008

Keywords

Comments

This is to A001358 as A036467 is to A000040.

Crossrefs

Programs

  • Maple
    A001358 := proc(n) option remember ; if n =1 then 4; else for a from A001358(n-1)+1 do if numtheory[bigomega](a) = 2 then RETURN(a) ; fi ; od: fi ; end: A137462 := proc(n) option remember; if n =0 then 1; else A001358(n)-A137462(n-1) ; fi ; end: seq(A137462(n),n=0..100) ; # R. J. Mathar, Apr 23 2008
  • Mathematica
    Module[{nn=300,sp,k=1},sp=Select[Range[nn],PrimeOmega[#]==2&];Join[{1}, Table[k=sp[[n]]-k,{n,Length[sp]}]]] (* Harvey P. Dale, Apr 30 2015 *)

Formula

a(n) + a(n-1) = A001358(n).

Extensions

More terms from R. J. Mathar, Apr 23 2008

A200927 Difference between (least semiprime >= n) and (largest semiprime <= n).

Original entry on oeis.org

0, 2, 0, 3, 3, 0, 0, 4, 4, 4, 0, 0, 6, 6, 6, 6, 6, 0, 0, 3, 3, 0, 0, 7, 7, 7, 7, 7, 7, 0, 0, 0, 3, 3, 0, 0, 7, 7, 7, 7, 7, 7, 0, 3, 3, 0, 2, 0, 4, 4, 4, 0, 2, 0, 0, 4, 4, 4, 0, 3, 3, 0, 4, 4, 4, 0, 5, 5, 5, 5, 0, 3, 3, 0, 5, 5, 5, 5, 0, 3, 3, 0, 0, 0, 4, 4, 4
Offset: 4

Views

Author

Arkadiusz Wesolowski, Nov 24 2011

Keywords

Comments

a(n) = 0 if and only if n is semiprime.

Crossrefs

Programs

  • Maple
    A106325 := proc(n)
        for a from n do
            if numtheory[bigomega](a) = 2 then
                return a;
            end if;
        end do:
    end proc;
    prevSpr := proc(n)
        for a from n by -1 do
            if numtheory[bigomega](a) = 2 then
                return a;
            end if;
        end do:
    end proc;
    A200927 := proc(n)
        A106325(n)-prevSpr(n) ;
    end proc:
    seq(A200927(n),n=4..80) ; # R. J. Mathar, Nov 26 2011
  • Mathematica
    Table[a = b = 0; While[! PrimeOmega[n - a] == 2, a++]; While[! PrimeOmega[n + b] == 2, b++]; a + b, {n, 4, 100}]
Previous Showing 51-60 of 63 results. Next