cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 41 results. Next

A285322 Transpose of square array A285321.

Original entry on oeis.org

2, 4, 3, 8, 9, 6, 16, 27, 12, 5, 32, 81, 18, 25, 10, 64, 243, 24, 125, 20, 15, 128, 729, 36, 625, 40, 45, 30, 256, 2187, 48, 3125, 50, 75, 60, 7, 512, 6561, 54, 15625, 80, 135, 90, 49, 14, 1024, 19683, 72, 78125, 100, 225, 120, 343, 28, 21
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

See A285321.

Crossrefs

Transpose: A285321.

Programs

  • Python
    from functools import reduce
    from operator import mul
    from sympy import prime, primefactors
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # This function from Chai Wah Wu
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a065642(n):
        if n==1: return 1
        r=a007947(n)
        n = n + r
        while a007947(n)!=r:
            n+=r
        return n
    def A(n, k): return a019565(k) if n==1 else a065642(A(n - 1, k))
    for n in range(1, 11): print([A(n - k + 1, k) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 19 2017
  • Scheme
    (define (A285322 n) (A285321bi (A004736 n) (A002260 n))) ;; For A285321bi, see A285321.
    

A366460 Odd terms in A366825.

Original entry on oeis.org

45, 63, 99, 117, 153, 171, 175, 207, 261, 275, 279, 315, 325, 333, 369, 387, 423, 425, 475, 477, 495, 531, 539, 549, 575, 585, 603, 637, 639, 657, 693, 711, 725, 747, 765, 775, 801, 819, 833, 855, 873, 909, 925, 927, 931, 963, 981, 1017, 1025, 1035, 1071, 1075
Offset: 1

Views

Author

Michael De Vlieger, Jan 05 2024

Keywords

Comments

Proper subset of A364997, in turn a proper subset of A364996, which is a proper subset of A126706.
Prime signature of a(n) is 2 followed by at least one 1.
Numbers of the form A065642(k) where k is an odd term in A120944.
Numbers of the form p^2 * m, squarefree m > 1, odd prime p < lpf(m), where lpf(m) = A020639(m).
The asymptotic density of this sequence is (2/(3*Pi^2)) * Sum_{p odd prime} ((1/p^2) * (Product_{odd primes q <= p} (q/(q+1)))) = 0.0537475047... . - Amiram Eldar, Jan 08 2024

Examples

			a(1) = 45 = 9*5 = p^2 * m, squarefree m > 1; sqrt(9) < lpf(5), i.e., 3 < 5.
a(2) = 63 = 9*7 = p^2 * m, squarefree m > 1; sqrt(9) < lpf(7), i.e., 3 < 7.
Prime powers p^k, k > 2, are not in the sequence since m = p^(k-2) is not squarefree and p = lpf(m).
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[1, 1100, 2], PrimeOmega[#] > PrimeNu[#] > 1 &], And[OddQ[#1], #1/(Times @@ #2) == #2[[1]]] & @@ {#, FactorInteger[#][[All, 1]]} &]
  • PARI
    is(n) = {my(e); n%2 && e = factor(n)[, 2]; #e > 1 && e[1] == 2 && vecmax(e[2..#e]) == 1; } \\ Amiram Eldar, Jan 08 2024

Formula

{a(n)} = {A366825 \ A364999}.

A079228 Least number > n with greater squarefree kernel than that of n.

Original entry on oeis.org

2, 3, 5, 5, 6, 7, 10, 9, 10, 11, 13, 13, 14, 15, 17, 17, 19, 19, 21, 21, 22, 23, 26, 26, 26, 29, 28, 29, 30, 31, 33, 33, 34, 35, 37, 37, 38, 39, 41, 41, 42, 43, 46, 46, 46, 47, 51, 49, 50, 51, 53, 53, 55, 55, 57, 57, 58, 59, 61, 61, 62, 65, 65, 65, 66, 67, 69, 69, 70, 71, 73, 73
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 02 2003

Keywords

Crossrefs

a(n) = n + A079229(n). Cf. A007947, A065642.

Programs

  • Haskell
    a079228 n = head [k | k <- [n+1..], a007947 k > a007947 n]
    -- Reinhard Zumkeller, Oct 11 2011
    
  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[All, 1]]; a[1] = 2; a[n_] := For[k = 1, True, k++, If[rad[n + k] > rad[n], Return[n + k]]]; Table[a[n], {n, 1, 72}] (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    rad(n)=my(f=factor(n)[,1]);prod(i=1,#f,f[i])
    a(n)=my(r=rad(n));while(rad(n++)<=r,); n \\ Charles R Greathouse IV, Aug 21 2013

A286544 Restricted growth sequence of A285333.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 5, 4, 6, 5, 7, 6, 8, 9, 9, 5, 10, 9, 11, 8, 12, 13, 14, 9, 13, 6, 15, 11, 16, 17, 17, 8, 18, 17, 19, 13, 20, 17, 21, 8, 22, 17, 23, 24, 25, 23, 26, 13, 27, 11, 28, 16, 29, 30, 31, 17, 32, 9, 33, 34, 24, 35, 35, 6, 36, 37, 38, 39, 40, 41, 42, 13, 43, 44, 45, 28, 46, 28, 34, 6, 47, 48, 49, 21, 50, 35, 51, 39, 52, 53, 54, 55, 56, 57, 58, 11, 59
Offset: 0

Views

Author

Antti Karttunen, May 18 2017

Keywords

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ Michel Marcus, Oct 10 2016
    A007947(n) = factorback(factorint(n)[, 1]); \\ From Andrew Lelechenko, May 09 2014
    A065642(n) = { my(r=A007947(n)); if(1==n,n,n = n+r; while(A007947(n) <> r, n = n+r); n); };
    A285332(n) = { if(n<=1,n+1,if(!(n%2),A019565(A285332(n/2)),A065642(A285332((n-1)/2)))); };
    A285333(n) = if(!n,n,if(!(n%2),A285332(n/2),A048675(A285332(n))));
    write_to_bfile(0,rgs_transform(vector(8192,n,A285333(n-1))),"b286544.txt");

A340305 Numbers k such that k and the least number that is larger than k and has the same set of distinct prime divisors as k also has the same prime signature as k.

Original entry on oeis.org

12, 45, 60, 63, 84, 132, 156, 175, 204, 228, 275, 276, 315, 325, 348, 350, 372, 420, 425, 444, 475, 492, 495, 516, 525, 539, 540, 564, 575, 585, 636, 637, 660, 675, 693, 700, 708, 732, 765, 780, 804, 819, 833, 852, 855, 876, 924, 931, 948, 996, 1020, 1035, 1068
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2021

Keywords

Comments

Numbers k such that k and A065642(k) have the same prime signature (A118914).

Examples

			12 is a term since the least number that is larger than 12 and has the same set of distinct prime divisors as 12, {2, 3}, is 18 = 2 * 3^2 which also has the same prime signature as 12.
		

Crossrefs

Subsequence: A251720.

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[;; , 1]]; next[n_] := Module[{r = rad[n]}, SelectFirst[Range[n + 1, n^2], rad[#] == r &]]; sig[n_] := Sort @ FactorInteger[n][[;; , 2]]; Select[Range[2, 300], sig[#] == sig[next[#]] &]

A360529 a(n) is the smallest k > A024619(n) such that rad(k) = rad(A024619(n)), where rad(n) = A007947(n).

Original entry on oeis.org

12, 20, 18, 28, 45, 24, 40, 63, 44, 36, 52, 56, 60, 99, 68, 175, 48, 76, 117, 50, 84, 88, 75, 92, 54, 80, 153, 104, 72, 275, 98, 171, 116, 90, 124, 147, 325, 132, 136, 207, 140, 96, 148, 135, 152, 539, 156, 100, 164, 126, 425, 172, 261, 176, 120, 637, 184, 279, 188, 475, 108, 112, 297, 160, 204, 208
Offset: 1

Views

Author

Michael De Vlieger, May 01 2023

Keywords

Comments

Permutation of A126706.
Let m = A024619(n) and let R_m be the sequence of numbers k such that rad(k) = rad(m). a(n) gives the successor to m in R_m.

Examples

			A024619(1) = 6; the smallest k > 6 such that rad(k) = 6 is a(1) = 12.
A024619(2) = 10; the smallest k > 10 such that rad(k) = 10 is a(2) = 20.
A024619(3) = 12; the smallest k > 12 such that rad(k) = rad(12) = 6 is a(3) = 18.
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times@ FactorInteger[x][[All, 1]]; Table[k = m + 1; Function[r, If[SquareFreeQ[m], m*FactorInteger[m][[1, 1]],  While[rad[k] != r, k++]; k]][rad[m]], {m, Select[Range[2, 104], ! PrimePowerQ[#] &]}]

Formula

a(n) = A065642 \ A001597.
Squarefree m implies a(n) = lpf(m)*m = A020639(m)*m.

A366807 a(n) = A020639(A120944(n))*A120944(n).

Original entry on oeis.org

12, 20, 28, 45, 63, 44, 52, 60, 99, 68, 175, 76, 117, 84, 92, 153, 275, 171, 116, 124, 325, 132, 207, 140, 148, 539, 156, 164, 425, 172, 261, 637, 279, 188, 475, 204, 315, 212, 220, 333, 228, 575, 236, 833, 244, 369, 387, 260, 931, 268, 276, 423, 284, 1573, 725
Offset: 1

Views

Author

Michael De Vlieger, Dec 16 2023

Keywords

Comments

Define f(x) to be lpf(k)*k, where lpf(k) = A020639(k). This sequence contains the mappings of f(x) across composite squarefree numbers A120944.
Define sequence R_k = { m : rad(m) | k }, where rad(n) = A007947(n) and k is squarefree. Then the sequence k*R_k contains all numbers divisible by squarefree k that are also not divisible by any prime q coprime to k. It is plain to see that k is the first term in the sequence k*R_k. This sequence gives the second term in k*R_k since lpf(k) is the second term in R_k.
Permutation of A366825. Contains numbers whose prime signature has at least 2 terms, of which is 2, the rest of which are 1s.
Proper subset of A364996, which itself is contained in A126706.

Examples

			Let b(n) = A120944(n).
a(1) = 12 = 2^2*3^1 = b(1)*lpf(b(1)) = 6*lpf(6) = 6*2. In {6*A003586}, 12 is the second term.
a(2) = 20 = 2^2*5^1 = b(2)*lpf(b(2)) = 10*lpf(10) = 10*2. In {10*A003592}, 20 is the second term.
a(4) = 45 = 3^2*5^1 = b(4)*lpf(b(4)) = 15*lpf(15) = 15*3. In {15*A003593}, 45 is the second term, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 150; s = Select[Range[nn], And[SquareFreeQ[#], CompositeQ[#]] &];
    Array[#*FactorInteger[#][[1, 1]] &[s[[#]]] &, Length[s]]
  • Python
    from math import isqrt
    from sympy import primepi, mobius, primefactors
    def A366807(n):
        def f(x): return n+1+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n+1, f(n+1)
        while m != k:
            m, k = k, f(k)
        return m*min(primefactors(m)) # Chai Wah Wu, Aug 02 2024

Formula

a(n) = A065642(A120944(n)), n > 1.
a(n) = A285109(A120944(n)).

A357126 a(n) is the smallest positive integer k such that k > n and A071364(k) = A071364(n).

Original entry on oeis.org

3, 5, 9, 7, 10, 11, 27, 25, 14, 13, 20, 17, 15, 21, 81, 19, 50, 23, 28, 22, 26, 29, 40, 49, 33, 125, 44, 31, 42, 37, 243, 34, 35, 38, 100, 41, 39, 46, 56, 43, 66, 47, 45, 52, 51, 53, 80, 121, 75, 55, 63, 59, 250, 57, 88, 58, 62, 61, 84, 67, 65, 68, 729, 69, 70, 71, 76, 74, 78, 73, 200, 79, 77, 98
Offset: 2

Views

Author

Gleb Ivanov, Oct 26 2022

Keywords

Examples

			a(12) = 20 as 12 has (2, 1) sequence of exponents in canonical prime factorization via 12 = 2^2 * 3^1 and the smallest positive integer > 12 with the same sequence of exponents in canonical prime factorization being (2, 1) is 20 as 20 = 2^2 * 5^1. - _David A. Corneth_, Oct 26 2022
		

Crossrefs

Programs

  • PARI
    f4(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = prime(i)); factorback(f); \\ A071364
    a(n) = my(k=n+1, f=f4(n)); while (f4(k) != f, k++); k; \\ Michel Marcus, Oct 26 2022
    
  • PARI
    first(n) = { my(res = vector(n + 1), todo = n, m = Map(), u = precprime(n)); for(e = 2, logint(n, 2), u = max(u, nextprime(sqrtnint(n, e) + 2)^e) ); forfactored(i = 2, u, cs = i[2][,2]; if(mapisdefined(m, cs), ci = mapget(m, cs); if(ci <= n + 1, res[ci] = i[1]; mapput(m, cs, i[1]); todo--; if(todo <= 0, res = res[^1]; return(res) ) ) , if(i[1] <= n + 1, mapput(m, cs, i[1]) ) ) ) } \\ David A. Corneth, Oct 26 2022
  • Python
    from sympy import factorint
    to_s_exp = lambda n: tuple(i[1] for i in sorted(factorint(n).items()))
    terms = []
    for i in range(2, 100):
        k = i+1;t = to_s_exp(i)
        while t != to_s_exp(k):k+=1
        terms.append(k)
    print(terms)
    

Formula

a(A000961(k)) = a(A003961(A000961(k))) for k > 1. - David A. Corneth, Oct 26 2022
a(n) >= A081761(n). - Rémy Sigrist, Feb 16 2023

A362432 a(n) is the smallest k > A126706(n) such that rad(k) = rad(A126706(n)) and k mod n != 0, where rad(n) = A007947(n).

Original entry on oeis.org

18, 24, 50, 36, 98, 48, 50, 242, 75, 54, 80, 338, 72, 98, 90, 147, 578, 96, 135, 722, 100, 126, 242, 120, 1058, 108, 112, 363, 160, 338, 144, 196, 1682, 507, 150, 1922, 168, 198, 225, 578, 350, 162, 189, 2738, 180, 722, 867, 234, 200, 192, 3362, 252, 1083, 3698, 245, 242, 240, 1058, 4418, 441, 216, 224
Offset: 1

Views

Author

Michael De Vlieger, May 19 2023

Keywords

Comments

Let m = A126706(n) and r = rad(m).
Smallest number k greater than m that shares the same squarefree kernel as m, yet does not divide m.
a(n) is in A126706, not a permutation of A126706.
k/r and m/r are coprime.
a(n) < m^2, since k/m < r.

Examples

			A126706(1) = 12; the smallest k > 12 such that both rad(k) = rad(12) = 6 and 12 does not divide k is a(1) = 18.
A126706(2) = 18; the smallest k > 18 such that both rad(k) = rad(18) = 6 and 18 does not divide k is a(2) = 24.
A126706(3) = 20; the smallest k > 20 such that rad(k) = rad(20) = 10, indivisible by 20, is a(3) = 50.
A126706(7) = 40; the smallest k > 40 such that rad(k) = rad(40) = 10, indivisible by 40, is a(7) = 50.
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[k = m + 1; Function[r, While[Nand[rad[k] == r, ! Divisible[k, m]], k++]][rad[m]]; k, {m, Select[Range[196], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]}]

A365656 Array T(n,k) read by antidiagonals (downward): T(n,1) = A005117(n) (squarefree numbers > 1); for k > 1, columns are nonsquarefree numbers (in descending order) with exactly the same prime factors as T(n,1).

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 5, 16, 27, 25, 6, 32, 81, 125, 12, 7, 64, 243, 625, 18, 49, 10, 128, 729, 3125, 24, 343, 20, 11, 256, 2187, 15625, 36, 2401, 40, 121, 13, 512, 6561, 78125, 48, 16807, 50, 1331, 169, 14, 1024, 19683, 390625, 54, 117649, 80, 14641, 2197, 28, 15
Offset: 0

Views

Author

Michael De Vlieger, Nov 17 2023

Keywords

Comments

Permutation of natural numbers.
Transpose of A284311 with a(0) = 1 prepended.
Essentially the same as A284457. - R. J. Mathar, Jan 23 2024

Examples

			Table T(n,k) for n = 1..12 and k = 1..6 shown below:
  n\k |  1    2     3       4        5         6 ...
  ----------------------------------------------
   1  |  1
   2  |  2    4     8      16       32        64
   3  |  3    9    27      81      243       729
   4  |  5   25   125     625     3125     15625
   5  |  6   12    18      24       36        48
   6  |  7   49   343    2401    16807    117649
   7  | 10   20    40      50       80       100
   8  | 11  121  1331   14641   161051   1771561
   9  | 13  169  2197   28561   371293   4826809
  10  | 14   28    56      98      112       196
  11  | 15   45    75     135      225       375
  12  | 17  289  4913   83521  1419857  24137569
  ...
Triangle begins:
   1;
   2;
   4,   3;
   8,   9,   5;
  16,  27,  25,  6;
  32,  81, 125, 12,  7;
  64, 243, 625, 18, 49, 10;
 ...
		

Crossrefs

Programs

  • Mathematica
    f[n_, k_ : 1] := Block[{c = 0, s = Sign[k], m}, m = n + s;
        While[c < Abs[k], While[! SquareFreeQ@ m, If[s < 0, m--, m++]];
         If[s < 0, m--, m++]; c++];
        m + If[s < 0, 1, -1] ] (* after Robert G.Wilson v at A005117 *);
      T[n_, k_] := T[n, k] =
        Which[And[n == 1, k == 1], 2, k == 1, f@T[n - 1, k],
         PrimeQ@ T[n, 1], T[n, 1]^k, True,
         Module[{j = T[n, k - 1]/T[n, 1] + 1},
          While[PowerMod[T[n, 1], j, j] != 0, j++]; j T[n, 1]]]; {1}~Join~
       Table[T[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // TableForm

Formula

For prime n = p, T(p,k) = p^k.
Previous Showing 31-40 of 41 results. Next