A354309
Expansion of e.g.f. 1/(1 - 2*x)^(x/2).
Original entry on oeis.org
1, 0, 2, 6, 44, 360, 3744, 46200, 662864, 10838016, 198943200, 4050937440, 90613710912, 2208677328000, 58265734055424, 1653914478303360, 50263564166365440, 1628300694034022400, 56012708047907510784, 2039053421375533094400, 78314004507947110456320
Offset: 0
-
With[{nn=20},CoefficientList[Series[1/(1-2x)^(x/2),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 10 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-2*x)^(x/2)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=2, i, j*2^(j-2)/(j-1)*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\2, 2^(n-2*k)*abs(stirling(n-k, k, 1))/(n-k)!);
A356795
E.g.f. satisfies A(x) = 1/(1 - x)^(x * A(x)^2).
Original entry on oeis.org
1, 0, 2, 3, 68, 330, 7674, 73080, 1883440, 28281960, 818625960, 17120406600, 557507325000, 15014517495120, 548643259812816, 18056683281775320, 736892260092195840, 28579282973977498560, 1295028345251832359616, 57666859088090317591680
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (2*k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (2*k+1)^(k-1)*(-x*log(1-x))^k/k!)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(2*x*log(1-x))/2)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((lambertw(2*x*log(1-x))/(2*x*log(1-x)))^(1/2)))
A353891
Expansion of e.g.f. exp( (x * log(1-x))^2 / 4 ).
Original entry on oeis.org
1, 0, 0, 0, 6, 30, 165, 1050, 8932, 86184, 909360, 10393020, 129313206, 1743627600, 25314159780, 393346535400, 6512022804960, 114430467296880, 2127154061337480, 41703621476302800, 859966710771029040, 18606040434320713920, 421427283751799685360
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((x*log(1-x))^2/4)))
-
a(n) = n!*sum(k=0, n\4, (2*k)!*abs(stirling(n-2*k, 2*k, 1))/(4^k*k!*(n-2*k)!));
A353892
Expansion of e.g.f. exp( -(x * log(1-x))^3 / 36 ).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 20, 210, 1960, 18900, 194880, 2166780, 26172080, 342599400, 4835694864, 73208215080, 1183011385920, 20318534134080, 369549843420384, 7094851788127680, 143377043010268800, 3042204544957939200, 67621161484919380800, 1571319471977711258880
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-(x*log(1-x))^3/36)))
-
a(n) = n!*sum(k=0, n\6, (3*k)!*abs(stirling(n-3*k, 3*k, 1))/(36^k*k!*(n-3*k)!));
A353893
Expansion of e.g.f. exp( (x * log(1-x))^4 / 576 ).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 70, 1260, 17850, 242550, 3350655, 48108060, 724403680, 11478967500, 191601229820, 3367499575440, 62253354650760, 1208755315895400, 24611454394536780, 524613603866302440, 11687734234226039220, 271715852337632107020
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((x*log(1-x))^4/576)))
-
a(n) = n!*sum(k=0, n\8, (4*k)!*abs(stirling(n-4*k, 4*k, 1))/(576^k*k!*(n-4*k)!));
A354310
Expansion of e.g.f. 1/(1 - 3*x)^(x/3).
Original entry on oeis.org
1, 0, 2, 9, 84, 990, 14754, 264600, 5549424, 133217784, 3601384200, 108249692760, 3580724721672, 129250420556400, 5055196156459344, 212951257371183240, 9612027759287831040, 462798880374787387200, 23675607840207619145664, 1282413928716141429168000
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-3*x)^(x/3)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=2, i, j*3^(j-2)/(j-1)*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\2, 3^(n-2*k)*abs(stirling(n-k, k, 1))/(n-k)!);
A354623
Expansion of e.g.f. ( Product_{k>0} 1/(1-x^k) )^x.
Original entry on oeis.org
1, 0, 2, 9, 44, 390, 2754, 32760, 310064, 4244184, 54887400, 818615160, 12909921672, 225872515440, 4045885572624, 79360837887240, 1649832369335040, 35666417240193600, 822291935260976064, 19830352438530840960, 501144432316767688320, 13229590606682042436480
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[1/(1 - x^k)^x, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Aug 17 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, 1-x^k)^x))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j!*sigma(j-1)/(j-1)*binomial(i-1, j-1)*v[i-j+1])); v;
A356554
Expansion of e.g.f. ( Product_{k>0} 1/(1-x^k)^k )^x.
Original entry on oeis.org
1, 0, 2, 15, 92, 930, 8514, 116760, 1445744, 23020200, 373858920, 6756785640, 130982295432, 2751191997840, 61046788571664, 1445520760702200, 36387213668348160, 960383111961228480, 26780931923301572544, 781864626481646405760, 23925584882896903854720
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-x^k)^k)^x))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j!*sigma(j-1, 2)/(j-1)*binomial(i-1, j-1)*v[i-j+1])); v;
A356796
E.g.f. satisfies A(x) = 1/(1 - x)^(x * A(x)^3).
Original entry on oeis.org
1, 0, 2, 3, 92, 450, 14454, 141540, 4980128, 78711696, 3048567480, 68677353360, 2930551701384, 86832573553440, 4079649847428960, 150444517302424800, 7768028697749806080, 342721736137376184960, 19392702029822685015360, 994397473912386435004800
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (3*k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (3*k+1)^(k-1)*(-x*log(1-x))^k/k!)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(3*x*log(1-x))/3)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((lambertw(3*x*log(1-x))/(3*x*log(1-x)))^(1/3)))
A066165
Variant of Stanley's children's game. Class of n (named) children forms into rings of at least two with exactly one child inside each ring. a(n) gives number of possibilities, including clockwise order (or which hand is held), in each ring.
Original entry on oeis.org
3, 8, 30, 234, 1680, 13040, 119448, 1212120, 13412520, 161968872, 2118607920, 29813747040, 449227822680, 7216747374720, 123128587713600, 2223511629522624, 42370586275466880, 849664985938704000, 17886165587251839360, 394366490810199895680, 9088843342633833461760
Offset: 3
a(4)=8: ring must have 3 of the four, fourth in middle. Two ways for the three to hold hands.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999 (Sec. 5.2)
-
max = 20; f[x_] := Exp[-x*Log[1 - x] - x^2] - 1; Drop[ CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]!, 3] (* Jean-François Alcover, Oct 13 2011, after g.f. *)
-
a(n):=n!*sum(sum(binomial(k,j)*j!/(n-2*k+j)!*stirling1(n-2*k+j,j)*(-1)^(n-k-j),j,0,k)/k!,k,1,floor(n/2)); /* Vladimir Kruchinin, Sep 07 2010 */