cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A120051 Number of 10-almost primes less than or equal to 10^n.

Original entry on oeis.org

0, 0, 0, 0, 22, 306, 4016, 49163, 578154, 6618221, 74342563, 823164388, 9011965866, 97765974368, 1052666075366, 11263041623194, 119864659464824, 1269754732725522, 13396817167474205, 140847445420555406
Offset: 0

Views

Author

Robert G. Wilson v, Feb 07 2006

Keywords

Examples

			There are 22 ten-almost primes up to 10000: 1024, 1536, 2304, 2560, 3456, 3584, 3840, 5184, 5376, 5632, 5760, 6400, 6656, 7776, 8064, 8448, 8640, 8704, 8960, 9600, 9728, and 9984.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[AlmostPrimePi[10, 10^n], {n, 12}]
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A120051(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(10**n//prod(c[1] for c in a))-a[-1][0] for a in g(10**n,0,1,1,10))) # Chai Wah Wu, Nov 03 2024

Extensions

More terms from Robert G. Wilson v, Jan 07 2007
a(15)-a(19) from Henri Lifchitz, Mar 20 2025

A120053 Number of 12-almost primes less than or equal to 10^n.

Original entry on oeis.org

0, 0, 0, 0, 3, 63, 865, 11068, 133862, 1563465, 17836903, 200051717, 2214357712, 24255601105, 263439785143, 2841076717752, 30457549169277, 324855769153426, 3449587218984911, 36489283363168885
Offset: 0

Views

Author

Robert G. Wilson v, Feb 07 2006

Keywords

Examples

			There are 3 twelve-almost primes up to 10000: 4096, 6144, and 9216.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[AlmostPrimePi[12, 10^n], {n, 11}]
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A120053(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(10**n//prod(c[1] for c in a))-a[-1][0] for a in g(10**n,0,1,1,12))) # Chai Wah Wu, Aug 23 2024

Extensions

a(13) and a(14) from Robert G. Wilson v, Jan 07 2007
a(15) from Chai Wah Wu, Aug 24 2024
a(16)-a(19) from Henri Lifchitz, Mar 18 2025

A125527 Number of semiprimes <= 2^n.

Original entry on oeis.org

0, 1, 2, 6, 10, 22, 42, 82, 157, 304, 589, 1124, 2186, 4192, 8110, 15658, 30253, 58546, 113307, 219759, 426180, 827702, 1608668, 3129211, 6091437, 11868599, 23140878, 45150717, 88157689, 172235073, 336717854, 658662065, 1289149627, 2524532330
Offset: 1

Views

Author

Robert G. Wilson v, Dec 29 2006

Keywords

Crossrefs

Programs

  • Mathematica
    SemiPrimePi[n_] := Sum[ PrimePi[ n/Prime@i] - i + 1, {i, PrimePi@ Sqrt@n}]; Table[ SemiPrimePi[2^n], {n, 47}]
  • PARI
    a(n)=my(s,i,N=2^n); forprime(p=2, sqrtint(N), s+=primepi(N\p); i++); s - i * (i-1)/2 \\ Charles R Greathouse IV, May 12 2013
    
  • Perl
    use ntheory ":all"; print "$ ",semiprime_count(1 << $),"\n" for 1..48; # Dana Jacobsen, Sep 10 2018

Formula

a(n) = A072000(2^n). - R. J. Mathar, Aug 26 2011

A120052 Number of 11-almost primes less than or equal to 10^n.

Original entry on oeis.org

0, 0, 0, 0, 7, 138, 1878, 23448, 279286, 3230577, 36585097, 407818620, 4490844534, 48972151631, 529781669333, 5693047157230, 60832290450373, 646862625625663, 6849459596884350, 72259172519243461
Offset: 0

Views

Author

Robert G. Wilson v, Feb 07 2006

Keywords

Examples

			There are 7 eleven-almost primes up to 10000: 2048, 3072, 4608, 5120, 6912, 7168, and 7680.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[AlmostPrimePi[11, 10^n], {n, 12}]

Extensions

a(14) from Robert G. Wilson v, Jan 07 2007
a(15)-a(19) from Henri Lifchitz, Mar 18 2025

A036351 Number of numbers <= 10^n that are products of two distinct primes.

Original entry on oeis.org

2, 30, 288, 2600, 23313, 209867, 1903878, 17426029, 160785135, 1493766851, 13959963049, 131125938680, 1237087821006, 11715901643501, 111329815346924, 1061057287065814, 10139482896634686, 97123037634329553, 932300026078297246, 8966605849186166511, 86389956292394285653, 833671466547121873095, 8056846659972421004731
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[ PrimePi[n/Prime[i]] - i, {i, PrimePi[ Sqrt[ n]] }]; Table[ f[10^n], {n, 14}] (* Robert G. Wilson v, Feb 07 2012 and modified Dec 28 2016 *)
  • PARI
    a(n)=my(s);forprime(p=2,sqrt(10^n),s+=primepi(10^n\p)); s-binomial(primepi(sqrt(10^n))+1,2) \\ Charles R Greathouse IV, Apr 23 2012
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A036351(n): return -(t:=primepi(s:=isqrt(m:=10**n)))-(t*(t-1)>>1)+sum(primepi(m//k) for k in primerange(1, s+1)) # Chai Wah Wu, Aug 15 2024

Formula

a(n) = (1/2)*(pi(10^(n/2)) + Sum_{i=1..pi(10^n)} pi((10^n-1)/P_i)) -1 = Sum_{i=1..pi(sqrt(10^n))} (pi((10^n-1)/P_i) -1) - binomial(pi(sqrt(10^n)), 2). - Robert G. Wilson v, May 19 2005
a(n) = A036352(n) - A122121(n). - Robert G. Wilson v, Feb 07 2012

Extensions

a(14) from Robert G. Wilson v, May 19 2005
a(15)-a(16) from Donovan Johnson, Oct 16 2010
Corrected a(15) and a(16) by Henri Lifchitz, Nov 11 2012
a(17)-a(19) from Henri Lifchitz, Nov 11 2012
a(20)-a(21) from Henri Lifchitz, Jul 03 2015
a(22)-a(23) from Henri Lifchitz, Nov 09 2024

A114125 a(n) is the 10^n-th semiprime.

Original entry on oeis.org

4, 26, 314, 3595, 40882, 459577, 5109839, 56168169, 611720495, 6609454805, 70937808071, 757060825018, 8040423200947, 85037651263063, 896113850117314, 9413000361625346, 98597629032410971, 1030179406403917981, 10739422018595513973, 111729397883168684917, 1160260967837159869621
Offset: 0

Views

Author

Robert G. Wilson v, Feb 11 2006

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; c = 0; k = 2; Do[While[c < 10^n, If[fQ@k, c++ ]; k++ ]; Print[k - 1], {n, 0, 8}]
    (* checked by *) SemiPrimePi[n_] := Sum[ PrimePi[n/Prime@i] - i + 1, {i, PrimePi@ Sqrt@n}]
  • Perl
    use ntheory ":all"; print "$ ",nth_semiprime(10**$),"\n" for 0..15; # Dana Jacobsen, Oct 08 2018

Extensions

a(14) from Donovan Johnson, Sep 27 2010
Corrected a(14), added a(15)-a(18) from Dana Jacobsen, Oct 10 2018
a(19)-a(20) from Henri Lifchitz, Nov 08 2024

A085770 Number of odd semiprimes < 10^n. Number of terms of A046315 < 10^n.

Original entry on oeis.org

0, 1, 19, 204, 1956, 18245, 168497, 1555811, 14426124, 134432669, 1258822220, 11840335764, 111817881036, 1059796387004, 10076978543513, 96091983644261, 918679875630905, 8803388145953381, 84537081118605467, 813340036541900706, 7838825925851034479, 75669246175972479567
Offset: 0

Views

Author

Hugo Pfoertner, Jul 22 2003

Keywords

Examples

			a(1)=1 because A046315(1)=9=3*3 is the only odd semiprime < 10^1,
a(2)=19 because there are 19 terms of A046315 < 10^2.
		

Crossrefs

Cf. A046315 (odd numbers divisible by exactly 2 primes), A066265 (number of semiprimes < 10^n), A220262, A292785.

Programs

  • Mathematica
    OddSemiPrimePi[n_] := Sum[ PrimePi[n/Prime@i] - i + 1, {i, 2, PrimePi@ Sqrt@ n}]; Table[ OddSemiPrimePi[10^n], {n, 14}] (* Robert G. Wilson v, Feb 02 2006 *)
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A085770(n): return int((-(t:=primepi(s:=isqrt(m:=10**n)))*(t-1)>>1)+sum(primepi(m//k) for k in primerange(3, s+1))) if n>1 else n # Chai Wah Wu, Oct 17 2024

Formula

a(n) = A066265(n) - A220262(n) for n > 1. - Jinyuan Wang, Jul 30 2021

Extensions

a(10)-a(14) from Robert G. Wilson v, Feb 02 2006
a(15)-a(16) from Donovan Johnson, Mar 18 2010
a(0) inserted by and a(17)-a(21) from Jinyuan Wang, Jul 30 2021

A220262 Number of even semiprimes < 10^n. Number of terms of A100484 < 10^n.

Original entry on oeis.org

0, 3, 15, 95, 669, 5133, 41538, 348513, 3001134, 26355867, 234954223, 2119654578, 19308136142, 177291661649, 1638923764567, 15237833654620, 142377417196364, 1336094767763971, 12585956566571620, 118959989688273472, 1127779923790184543, 10720710117789005897
Offset: 0

Views

Author

Robert G. Wilson v, Dec 08 2012

Keywords

Comments

All such semiprimes have the form 2*p, where p is prime. - T. D. Noe, Dec 09 2012

Crossrefs

Programs

  • Mathematica
    Table[PrimePi[10^n/2], {n, 0, 14}]
  • PARI
    a(n)=primepi(10^n\2) \\ Charles R Greathouse IV, Sep 08 2015
    
  • Python
    from sympy import primepi
    def A220262(n): return primepi(10**n>>1) # Chai Wah Wu, Oct 17 2024

Formula

a(n) = A066265(n) - A085770(n) for n > 1.

Extensions

a(15)-a(20) from Hugo Pfoertner, Oct 14 2017
a(21) from Jinyuan Wang, Jul 30 2021

A292785 Number of odd squarefree semiprimes < 10^n.

Original entry on oeis.org

0, 16, 194, 1932, 18181, 168330, 1555366, 14424896, 134429269, 1258812629, 11840308472, 111817802539, 1059796159358, 10076977878935, 96091981692305, 918679869869451, 8803388128870716, 84537081067757934, 813340036390023775, 7838825925395981969, 75669246174605279757
Offset: 1

Views

Author

Hugo Pfoertner, Oct 10 2017

Keywords

Examples

			a(2)=16 because there are 16 squarefree odd semiprimes < 10^2: 15=3*5, 21=3*7, 33=3*11, 35=5*7, 39=3*13, 51=3*17, 55=5*11, 57=3*19, 65=5*13, 69=3*23, 77=7*11, 85=5*17, 87=3*29, 91=7*13, 93=3*31, 95=5*19.
		

Crossrefs

Programs

Formula

a(n) = A066265(n) - A122121(n) - A220262(n) + 1 for n > 1.

Extensions

a(21) from Jinyuan Wang, Jul 30 2021

A117526 Least number a(n) which is a product of n primes and such that Pi_n(a(n))/a(n) is maximum.

Original entry on oeis.org

3, 10, 9837, 259441550133
Offset: 1

Views

Author

Martin Raab and Robert G. Wilson v, Mar 25 2006

Keywords

Comments

Pi_n(a(n))/a(n): 0.66667, 0.40000, 0.25801, 0.2145967653
3=3, 10=2*5, 9837=3*3*1093 & 259441550133=3*89*311*3124409.
3 is the second prime, 10 is the fourth semiprime, 9837 is the 3-almost prime, and 259441550133 is the 4-almost prime.

Examples

			a(1)=3 because Pi(2)/2=1/2 < Pi(3)/3=2/3 > Pi(5)/5=3/5.
a(2)=10 because Pi_2(9)/9=1/3 < Pi_2(10)/10=2/5 > Pi_2(14)/14=5/14; Pi_2(10)/10 = Pi_2(15)/15 but 10 < 15.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    fQ[n_] := Plus @@ Last /@ FactorInteger@n == 4; c = r = 0; Do[If[fQ@n, c++ ]; If[c/n > r, Print[n]; r = c/n], {n, 10^6}]

Extensions

Comment edited and a(4) added by Donovan Johnson, Mar 10 2010
Previous Showing 11-20 of 27 results. Next