A120051
Number of 10-almost primes less than or equal to 10^n.
Original entry on oeis.org
0, 0, 0, 0, 22, 306, 4016, 49163, 578154, 6618221, 74342563, 823164388, 9011965866, 97765974368, 1052666075366, 11263041623194, 119864659464824, 1269754732725522, 13396817167474205, 140847445420555406
Offset: 0
There are 22 ten-almost primes up to 10000: 1024, 1536, 2304, 2560, 3456, 3584, 3840, 5184, 5376, 5632, 5760, 6400, 6656, 7776, 8064, 8448, 8640, 8704, 8960, 9600, 9728, and 9984.
Cf.
A006880,
A036352,
A109251,
A114106,
A114453,
A120047,
A120048,
A120049,
A120050,
A120051,
A120052,
A120053,
A116430.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Table[AlmostPrimePi[10, 10^n], {n, 12}]
-
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A120051(n):
def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
return int(sum(primepi(10**n//prod(c[1] for c in a))-a[-1][0] for a in g(10**n,0,1,1,10))) # Chai Wah Wu, Nov 03 2024
A120053
Number of 12-almost primes less than or equal to 10^n.
Original entry on oeis.org
0, 0, 0, 0, 3, 63, 865, 11068, 133862, 1563465, 17836903, 200051717, 2214357712, 24255601105, 263439785143, 2841076717752, 30457549169277, 324855769153426, 3449587218984911, 36489283363168885
Offset: 0
There are 3 twelve-almost primes up to 10000: 4096, 6144, and 9216.
Cf.
A006880,
A036352,
A109251,
A114106,
A114453,
A120047,
A120048,
A120049,
A120050,
A120051,
A120052,
A120053,
A116430.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Table[AlmostPrimePi[12, 10^n], {n, 11}]
-
from math import prod, isqrt
from sympy import primerange, integer_nthroot, primepi
def A120053(n):
def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
return int(sum(primepi(10**n//prod(c[1] for c in a))-a[-1][0] for a in g(10**n,0,1,1,12))) # Chai Wah Wu, Aug 23 2024
A125527
Number of semiprimes <= 2^n.
Original entry on oeis.org
0, 1, 2, 6, 10, 22, 42, 82, 157, 304, 589, 1124, 2186, 4192, 8110, 15658, 30253, 58546, 113307, 219759, 426180, 827702, 1608668, 3129211, 6091437, 11868599, 23140878, 45150717, 88157689, 172235073, 336717854, 658662065, 1289149627, 2524532330
Offset: 1
-
SemiPrimePi[n_] := Sum[ PrimePi[ n/Prime@i] - i + 1, {i, PrimePi@ Sqrt@n}]; Table[ SemiPrimePi[2^n], {n, 47}]
-
a(n)=my(s,i,N=2^n); forprime(p=2, sqrtint(N), s+=primepi(N\p); i++); s - i * (i-1)/2 \\ Charles R Greathouse IV, May 12 2013
-
use ntheory ":all"; print "$ ",semiprime_count(1 << $),"\n" for 1..48; # Dana Jacobsen, Sep 10 2018
A120052
Number of 11-almost primes less than or equal to 10^n.
Original entry on oeis.org
0, 0, 0, 0, 7, 138, 1878, 23448, 279286, 3230577, 36585097, 407818620, 4490844534, 48972151631, 529781669333, 5693047157230, 60832290450373, 646862625625663, 6849459596884350, 72259172519243461
Offset: 0
There are 7 eleven-almost primes up to 10000: 2048, 3072, 4608, 5120, 6912, 7168, and 7680.
Cf.
A006880,
A036352,
A109251,
A114106,
A114453,
A120047,
A120048,
A120049,
A120050,
A120051,
A120052,
A120053,
A116430.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Table[AlmostPrimePi[11, 10^n], {n, 12}]
A036351
Number of numbers <= 10^n that are products of two distinct primes.
Original entry on oeis.org
2, 30, 288, 2600, 23313, 209867, 1903878, 17426029, 160785135, 1493766851, 13959963049, 131125938680, 1237087821006, 11715901643501, 111329815346924, 1061057287065814, 10139482896634686, 97123037634329553, 932300026078297246, 8966605849186166511, 86389956292394285653, 833671466547121873095, 8056846659972421004731
Offset: 1
-
f[n_] := Sum[ PrimePi[n/Prime[i]] - i, {i, PrimePi[ Sqrt[ n]] }]; Table[ f[10^n], {n, 14}] (* Robert G. Wilson v, Feb 07 2012 and modified Dec 28 2016 *)
-
a(n)=my(s);forprime(p=2,sqrt(10^n),s+=primepi(10^n\p)); s-binomial(primepi(sqrt(10^n))+1,2) \\ Charles R Greathouse IV, Apr 23 2012
-
from math import isqrt
from sympy import primepi, primerange
def A036351(n): return -(t:=primepi(s:=isqrt(m:=10**n)))-(t*(t-1)>>1)+sum(primepi(m//k) for k in primerange(1, s+1)) # Chai Wah Wu, Aug 15 2024
A114125
a(n) is the 10^n-th semiprime.
Original entry on oeis.org
4, 26, 314, 3595, 40882, 459577, 5109839, 56168169, 611720495, 6609454805, 70937808071, 757060825018, 8040423200947, 85037651263063, 896113850117314, 9413000361625346, 98597629032410971, 1030179406403917981, 10739422018595513973, 111729397883168684917, 1160260967837159869621
Offset: 0
-
fQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; c = 0; k = 2; Do[While[c < 10^n, If[fQ@k, c++ ]; k++ ]; Print[k - 1], {n, 0, 8}]
(* checked by *) SemiPrimePi[n_] := Sum[ PrimePi[n/Prime@i] - i + 1, {i, PrimePi@ Sqrt@n}]
-
use ntheory ":all"; print "$ ",nth_semiprime(10**$),"\n" for 0..15; # Dana Jacobsen, Oct 08 2018
Corrected a(14), added a(15)-a(18) from
Dana Jacobsen, Oct 10 2018
A085770
Number of odd semiprimes < 10^n. Number of terms of A046315 < 10^n.
Original entry on oeis.org
0, 1, 19, 204, 1956, 18245, 168497, 1555811, 14426124, 134432669, 1258822220, 11840335764, 111817881036, 1059796387004, 10076978543513, 96091983644261, 918679875630905, 8803388145953381, 84537081118605467, 813340036541900706, 7838825925851034479, 75669246175972479567
Offset: 0
a(1)=1 because A046315(1)=9=3*3 is the only odd semiprime < 10^1,
a(2)=19 because there are 19 terms of A046315 < 10^2.
-
OddSemiPrimePi[n_] := Sum[ PrimePi[n/Prime@i] - i + 1, {i, 2, PrimePi@ Sqrt@ n}]; Table[ OddSemiPrimePi[10^n], {n, 14}] (* Robert G. Wilson v, Feb 02 2006 *)
-
from math import isqrt
from sympy import primepi, primerange
def A085770(n): return int((-(t:=primepi(s:=isqrt(m:=10**n)))*(t-1)>>1)+sum(primepi(m//k) for k in primerange(3, s+1))) if n>1 else n # Chai Wah Wu, Oct 17 2024
a(0) inserted by and a(17)-a(21) from
Jinyuan Wang, Jul 30 2021
A220262
Number of even semiprimes < 10^n. Number of terms of A100484 < 10^n.
Original entry on oeis.org
0, 3, 15, 95, 669, 5133, 41538, 348513, 3001134, 26355867, 234954223, 2119654578, 19308136142, 177291661649, 1638923764567, 15237833654620, 142377417196364, 1336094767763971, 12585956566571620, 118959989688273472, 1127779923790184543, 10720710117789005897
Offset: 0
A292785
Number of odd squarefree semiprimes < 10^n.
Original entry on oeis.org
0, 16, 194, 1932, 18181, 168330, 1555366, 14424896, 134429269, 1258812629, 11840308472, 111817802539, 1059796159358, 10076977878935, 96091981692305, 918679869869451, 8803388128870716, 84537081067757934, 813340036390023775, 7838825925395981969, 75669246174605279757
Offset: 1
a(2)=16 because there are 16 squarefree odd semiprimes < 10^2: 15=3*5, 21=3*7, 33=3*11, 35=5*7, 39=3*13, 51=3*17, 55=5*11, 57=3*19, 65=5*13, 69=3*23, 77=7*11, 85=5*17, 87=3*29, 91=7*13, 93=3*31, 95=5*19.
-
-1 + Accumulate@ Table[Count[Range[10^n + 1, 10^(n + 1) - 1, 2], ?(And[ SquareFreeQ@ #, PrimeNu[#] == 2] &)], {n, 0, 5}] (* _Michael De Vlieger, Oct 10 2017 *)
-
from math import isqrt
from sympy import primepi, primerange
def A292785(n): return int((-(t:=primepi(s:=isqrt(m:=10**n)))*(t+1)>>1)+1+sum(primepi(m//k) for k in primerange(3, s+1))) if n>1 else 0 # Chai Wah Wu, Oct 17 2024
A117526
Least number a(n) which is a product of n primes and such that Pi_n(a(n))/a(n) is maximum.
Original entry on oeis.org
3, 10, 9837, 259441550133
Offset: 1
a(1)=3 because Pi(2)/2=1/2 < Pi(3)/3=2/3 > Pi(5)/5=3/5.
a(2)=10 because Pi_2(9)/9=1/3 < Pi_2(10)/10=2/5 > Pi_2(14)/14=5/14; Pi_2(10)/10 = Pi_2(15)/15 but 10 < 15.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
fQ[n_] := Plus @@ Last /@ FactorInteger@n == 4; c = r = 0; Do[If[fQ@n, c++ ]; If[c/n > r, Print[n]; r = c/n], {n, 10^6}]
Comments