cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 142 results. Next

A222565 Primes that are the largest anti-divisor of primes.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 19, 29, 31, 41, 47, 53, 59, 67, 71, 73, 101, 109, 127, 131, 149, 151, 167, 179, 181, 211, 233, 239, 281, 293, 307, 311, 347, 349, 379, 401, 409, 421, 431, 439, 449, 461, 467, 479, 541, 547, 569, 571, 587, 607, 613, 619, 631, 647, 661, 673, 701
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 25 2013

Keywords

Comments

See A066272 for definition of anti-divisor.
Primes p such that 2p + largest anti-divisor of 2p is also prime: 2, 5, 7, 11, 13, 29, 31, 41, 47, 59, 67, 79, 83, 101, 137, 139, 151, 157, 167, 173, 193, 223, 227, 239, 257,...

Examples

			The prime 19 is here because it is largest anti-divisor of prime 29.
		

Crossrefs

Cf. A066481.

Programs

Formula

2 together with primes of the form 4k+1 such that 6k+1 is prime, together with primes of the form 4k+3 such that 6k+5 is prime. - Charles R Greathouse IV, Feb 27 2013

Extensions

Missing terms a(9), a(21), a(28), a(29) added by Charles R Greathouse IV, Feb 27 2013

A066481 Largest anti-divisor of n.

Original entry on oeis.org

2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 43, 43, 44, 45, 45, 46, 47, 47, 48, 49, 49, 50
Offset: 3

Views

Author

Robert G. Wilson v, Jan 02 2002

Keywords

Comments

Apart from initial terms this is identical to A004396.
See A066272 for definition of anti-divisor.

Crossrefs

Cf. A066482.

Programs

  • Maple
    antidivisors := proc(n)
       local a, k;
       a := {} ;
       for k from 2 to n-1 do
          if abs((n mod k)- k/2) < 1 then
             a := a union {k} ;
          end if;
       end do:
       a ;
    end proc:
    A066481 := proc(n)
    if n < 3 then
        return 0;
    else
        sort(convert(antidivisors(n),list)) ;
        op(-1,%) ;
    end if;
    end proc: # R. J. Mathar, Mar 15 2013
  • Mathematica
    antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 &], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 &], 2n/Select[ Divisors[2*n], OddQ[ # ] && # != 1 &]]], # < n & ]; Table[ Last[ antid[n]], {n, 3, 100} ]
  • PARI
    a(n)=2*n\/3 \\ Charles R Greathouse IV, Feb 27 2013

A130846 Replace n with the concatenation of its anti-divisors.

Original entry on oeis.org

2, 3, 23, 4, 235, 35, 26, 347, 237, 58, 2359, 349, 2610, 311, 235711, 45712, 2313, 3813, 2614, 345915, 235915, 716, 2371017, 3417, 2561118, 3581119, 2319, 41220, 237921, 35791321, 2561322, 3423, 23101423, 824, 2351525, 3457111525, 2671126, 391627
Offset: 3

Views

Author

Jonathan Vos Post, Jul 20 2007, Jul 22 2007

Keywords

Comments

Number of anti-divisors concatenated to form a(n) is A066272(n). We may consider prime values of the concatenated anti-divisor sequence and we may iterate it, i.e. n, a(n), a(a(n)), a(a(a(n))) which leads to questions of trajectory, cycles, fixed points.
See A066272 for definition of anti-divisor.
Primes in this sequence are at n=3,4,5,10,14,16,40,46,100,145,149,... - R. J. Mathar, Jul 24 2007

Examples

			3: 2, so a(3) = 2.
4: 3, so a(4) = 3.
5: 2, 3, so a(5) = 23.
6: 4, so a(6) = 4.
7: 2, 3, 5, so a(7) = 235.
17: 2, 3, 5, 7, 11, so a(17) = 235711
		

Crossrefs

Programs

  • Maple
    antiDivs := proc(n) local resul,odd2n,r ; resul := {} ; for r in ( numtheory[divisors](2*n-1) union numtheory[divisors](2*n+1) ) do if n mod r <> 0 and r> 1 and r < n then resul := resul union {r} ; fi ; od ; odd2n := numtheory[divisors](2*n) ; for r in odd2n do if ( r mod 2 = 1) and r > 2 then resul := resul union {2*n/r} ; fi ; od ; RETURN(resul) ; end: A130846 := proc(n) cat(op(antiDivs(n))) ; end: seq(A130846(n),n=3..80) ; # R. J. Mathar, Jul 24 2007
  • Python
    from sympy.ntheory.factor_ import antidivisors
    def A130846(n): return int(''.join(str(s) for s in antidivisors(n))) # Chai Wah Wu, Dec 08 2021

Extensions

More terms from R. J. Mathar, Jul 24 2007

A192270 Pseudo anti-perfect numbers.

Original entry on oeis.org

5, 7, 8, 10, 17, 22, 23, 31, 32, 33, 35, 38, 39, 41, 45, 49, 52, 53, 56, 59, 60, 63, 67, 68, 70, 71, 72, 73, 74, 76, 77, 81, 82, 83, 85, 88, 94, 95, 98, 101, 102, 103, 104, 105, 108, 109, 110, 112, 115, 116, 117, 122, 123, 127, 129, 130, 137, 138, 143, 144, 147, 148, 149, 150, 151, 154, 157, 158, 162, 164, 165, 167, 171, 172, 175, 176, 178, 179, 182, 185
Offset: 1

Views

Author

Paolo P. Lava, Jun 28 2011

Keywords

Comments

A pseudo anti-perfect number is a positive integer which is the sum of a subset of its anti-divisors. By definition, anti-perfect numbers (A073930) are a subset of this sequence.
Prime pseudo anti-perfect numbers begin: 5, 7, 17, 23, 31, 41, 53, 59, 67, 71, 73, 83, 101, 103, 109, 127, 137, 149, 151, 157, 167, 179, .... - Jonathan Vos Post, Jul 09 2011

Examples

			39 is pseudo anti-perfect because its anti-divisors are 2, 6, 7, 11, 26 and the subset of 2, 11, and 26 adds up to 39.
		

Crossrefs

Programs

  • Maple
    with(combinat);
    P:=proc(i)
    local a,k,n,S;
    for n from 1 to i do
      a:={};
      for k from 2 to n-1 do if abs((n mod k)- k/2) < 1 then a:=a union {k}; fi; od;
      S:=subsets(a);
      while not S[finished] do
        if convert(S[nextvalue](), `+`)=n then print(n); break; fi;
      od;
    od;
    end:
    P(10000);

A192290 Anti-amicable numbers.

Original entry on oeis.org

14, 16, 92, 114, 5566, 6596, 1077378, 1529394, 3098834, 3978336, 70774930, 92974314
Offset: 1

Views

Author

Paolo P. Lava, Jun 29 2011

Keywords

Comments

Like A063990 but using anti-divisors. sigma*(a)=b and sigma*(b)=a, where sigma*(n) is the sum of the anti-divisors of n. Anti-perfect numbers A073930 are not included in the sequence.
There are also chains of 3 or more anti-sociable numbers.
With 3 numbers the first chain is: 1494, 2056, 1856.
sigma*(1494) = 4+7+12+29+36+49+61+103+332+427+996 = 2056.
sigma*(2056) = 3+9+16+1371+457 = 1856.
sigma*(1856) = 3+47+79+128+1237 = 1494.
With 4 numbers the first chain is: 46, 58, 96, 64.
sigma*(46) = 3+4+7+13+31 = 58.
sigma*(58) = 3+4+5+9+13+23+39 = 96.
sigma*(96) = 64.
sigma*(64) = 3+43 = 46.
No other pairs with the larger term < 2147000000. - Jud McCranie Sep 24 2019

Examples

			sigma*(14) = 3+4+9 = 16; sigma*(16) = 3+11 = 14.
sigma*(92) = 3+5+8+37+61= 114; sigma*(114) = 4+12+76 = 92.
sigma*(5566) = 3+4+9+44+92+484+1012+1237+3711= 6596; sigma*(6596) = 3+8+79+136+776+167+4397 = 5566.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A192290 := proc(q)
    local a,b,c,k,n;
    for n from 1 to q do
      a:=0;
      for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+k; fi; od;
      b:=a; c:=0;
      for k from 2 to b-1 do if abs((b mod k)-k/2)<1 then c:=c+k; fi; od;
      if n=c and not a=c then print(n); fi;
    od; end:
    A192290(1000000000);
  • Python
    from sympy import divisors
    def sigma_s(n):
        return sum([2*d for d in divisors(n) if n > 2*d and n % (2*d)] +
            [d for d in divisors(2*n-1) if n > d >=2 and n % d] +
            [d for d in divisors(2*n+1) if n > d >=2 and n % d])
    A192290 = [n for n in range(1,10**4) if sigma_s(n) != n and sigma_s(sigma_s(n)) == n] # Chai Wah Wu, Aug 14 2014

Extensions

a(7)-a(12) from Donovan Johnson, Sep 12 2011

A241557 Numbers k that do not have prime anti-divisors.

Original entry on oeis.org

1, 2, 6, 30, 36, 54, 90, 96, 114, 120, 156, 174, 210, 216, 300, 330, 414, 510, 516, 546, 576, 660, 714, 726, 744, 804, 810, 834, 894, 936, 966, 1014, 1044, 1056, 1134, 1170, 1296, 1344, 1356, 1500, 1560, 1584, 1626, 1650, 1680, 1686, 1734, 1764, 1770, 1836, 1884, 1926, 2010, 2046, 2064
Offset: 1

Views

Author

Michael De Vlieger, Aug 08 2014

Keywords

Examples

			a(3) = 6, since 6 has the anti-divisor 4, and it is composite.
a(4) = 30, since 30 has the anti-divisors {4, 12, 20} and none are prime.
All the integers 6 < k < 30 have at least one prime anti-divisor, and the only integers k < 6 that do not have prime antidivisors are k = {1, 2}.
		

Crossrefs

Programs

  • Mathematica
    primeAntiDivisors[n_] := Select[Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)], PrimeQ]; a241556[n_Integer] := Map[Length[primeAntiDivisors[#]] &, Range[n]]; Flatten[Position[a241556[10^5],0]]
  • Python
    from sympy import isprime, divisors
    A241557 = [n for n in range(1,10**6) if not any([isprime(x) for x in
              [2*d for d in divisors(n) if n > 2*d and n % (2*d)] +
              [d for d in divisors(2*n-1) if n > d >=2 and n % d] +
              [d for d in divisors(2*n+1) if n > d >=2 and n % d]])]
    # Chai Wah Wu, Aug 19 2014

A066418 Numbers k for which phi(k) + anti-phi(k) = k.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 12, 15, 27, 30, 40, 44, 57, 117, 128, 171, 236, 399, 408, 510, 1623, 3597, 3915, 4616, 4684, 7335, 10197, 10768, 14144, 32768, 39387, 76035, 77097, 106605, 162450, 196080, 219966, 391696
Offset: 1

Views

Author

Jon Perry, Dec 28 2001

Keywords

Comments

Anti-phi(n) (A066452) is the number of numbers coprime to all the anti-divisors of n.
See A066272 for definition of anti-divisor.

Examples

			The anti-divisors of 7 are 1, 2, 3 and 5. Therefore of the integer 1-6, only 1 is coprime to 2, 3 and 5, therefore anti-phi(7)=1. phi(7)=6, therefore anti-phi(7)+phi(7)=7
		

Crossrefs

Extensions

a(21)-a(34) from Nathaniel Johnston, Apr 20 2011
a(35)-a(39) from Amiram Eldar, Jan 12 2020

A073956 Palindromes whose sum of anti-divisors is palindromic.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 242, 252, 323, 434, 727, 4774, 32223, 42024, 43234, 46864, 64946, 70607, 4855584, 4942494, 6125216, 6265626, 149939941, 188737881, 241383142, 389181983, 470212074, 27685458672, 42685658624, 45625352654, 61039793016
Offset: 1

Views

Author

Jason Earls, Sep 03 2002

Keywords

Comments

See A066272 for definition of anti-divisor.

Crossrefs

Cf. A002113 (palindromes), A066272, A066417.

Programs

  • Python
    from itertools import chain
    def is_palindrome(x):
        return x == x[::-1]
    A073956 = sorted([n for n in chain(map(lambda x:int(str(x)+str(x)[::-1]),range(1,10**2)),map(lambda x:int(str(x)+str(x)[-2::-1]), range(1,10**3))) if is_palindrome(str(int(sum([d for d in range(2,n,2) if n%d and not 2*n%d]))+int(sum([d for d in range(3,n,2) if n%d and 2*n%d in [d-1,1]]))))]) # Chai Wah Wu, Aug 09 2014

Extensions

a(21)-a(33) from Donovan Johnson, Mar 30 2010

A093396 Denominators of n divided by the product of the anti-divisors of n.

Original entry on oeis.org

2, 3, 6, 2, 30, 15, 4, 42, 42, 10, 270, 54, 8, 33, 2310, 280, 78, 78, 8, 4050, 4050, 14, 1428, 102, 440, 6270, 114, 32, 7938, 257985, 520, 138, 552, 16, 11250, 866250, 616, 1458, 1458, 2720, 14790, 174, 131040, 16926, 17670, 190, 39204, 78408, 8, 2315250
Offset: 3

Views

Author

Lior Manor, Mar 28 2004

Keywords

Comments

See A066272 for definition of anti-divisor.

Examples

			The anti-divisors of 18 are 4, 5, 7, 12. Hence a(18) = 4*5*7*12/GCD(4*5*7*12, 18) = 280.
		

Crossrefs

Cf. A066417, A091507, A093394, A093395 (numerators).

Programs

  • Python
    import numpy as np
    from sympy.ntheory.factor_ import antidivisors
    def a093396(k):
            return (m:=np.prod(antidivisors(k), dtype=object))//np.gcd(m,k, dtype=object)
    {print(a093396(k), end = ', ') for k in range(3,10**2)} # Dumitru Damian, Oct 16 2023

Formula

a(n) = A091507(n)/GCD(n, A091507(n))

Extensions

Name changed by Franklin T. Adams-Watters, Aug 21 2013

A191580 Numbers n for which the sum of their prime factors (with repetition) divides the sum of their anti-divisors.

Original entry on oeis.org

5, 10, 40, 41, 129, 135, 140, 155, 182, 189, 200, 204, 206, 238, 375, 429, 435, 441, 455, 475, 546, 564, 574, 616, 625, 678, 722, 744, 765, 836, 856, 902, 1035, 1056, 1170, 1188, 1272, 1296, 1344, 1518, 1650, 1764, 1806, 1918, 1925
Offset: 1

Views

Author

Paolo P. Lava, Jun 07 2011

Keywords

Examples

			40-> sum prime factors=2+2+2+5=11; sum anti-divisors=3+9+16+27=55; 55/11=5
129-> sum prime factors=3+43=46; sum anti-divisors=2+6+7+37+86=138; 138/46=3
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(i) local a,b,j,k,s,n;
    for n from 3 to i do b:=ifactors(n)[2];
    s:=add(b[k][1]*b[k][2],k=1..nops(b));
    k:=0; j:=n; while j mod 2<>1 do k:=k+1; j:=j/2; od; a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2;
    if type(a/s,integer) then print(n); fi; od; end: P(2000);
Previous Showing 21-30 of 142 results. Next