cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A095343 Length of n-th string generated by a Kolakoski(7,1) rule starting with a(1)=1.

Original entry on oeis.org

1, 1, 7, 7, 31, 49, 145, 289, 727, 1591, 3775, 8545, 19873, 45505, 105127, 241639, 557023, 1281937, 2953009, 6798817, 15657847, 36054295, 83027839, 191190721, 440274241, 1013846401, 2334669127, 5376208327, 12380215711, 28508840689
Offset: 1

Views

Author

Benoit Cloitre, Jun 03 2004

Keywords

Comments

Each string is derived from the previous string using the Kolakoski(7,1) rule and the additional condition: "string begins with 1 if previous string ends with 5 and vice versa". The strings are 1 -> 7 -> 1111111 -> 7171717 -> 11111117111111171111111711111117 -> ... and each one contains 1,1,7,7,31,... elements.

Crossrefs

Programs

  • GAP
    a:=[1,1];; for n in [3..35] do a[n]:=a[n-1]-3*a[n-2]-3*(-1)^n; od; a; # G. C. Greubel, Dec 26 2019
  • Magma
    I:=[1,1]; [n le 2 select I[n] else Self(n-1) + 3*Self(n-2) - 3*(-1)^n: n in [1..35]]; // G. C. Greubel, Dec 26 2019
    
  • Maple
    seq(coeff(series(x*(1+x+3*x^2)/((1+x)*(1-x-3*x^2)), x, n+1), x, n), n = 0..35); # G. C. Greubel, Dec 26 2019
  • Mathematica
    Table[ 3*(-1)^n + 2*Sqrt[3]^n*(Sqrt[3]*Fibonacci[n, 1/Sqrt[3]] - Fibonacci[n+1, 1/Sqrt[3]]), {n,35}]//FullSimplify (* G. C. Greubel, Dec 26 2019 *)
  • PARI
    vector(35, n, round(3*(-1)^n + 2*(sqrt(3)/I)^n*(sqrt(3)*I* polchebyshev(n-1, 2, I/(2*sqrt(3))) - polchebyshev(n, 2, I/(2*sqrt(3)))) )) \\ G. C. Greubel, Dec 26 2019
    
  • Sage
    def A095343_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x+3*x^2)/((1+x)*(1-x-3*x^2)) ).list()
    a=A095343_list(35); a[1:] # G. C. Greubel, Dec 26 2019
    

Formula

a(1) = a(2) = 1, a(n) = a(n-1) + 3*a(n-2) - 3*(-1)^n.
G.f.: x*(1+x+3*x^2)/((1+x)*(1-x-3*x^2)). - Colin Barker, Jul 02 2012
a(n) = 3*(-1)^n + 2*(sqrt(3)/i)^n*(sqrt(3)*i*ChebyshevU(n, i/(2*sqrt(3))) - ChebyshevU(n-1, i/(2*sqrt(3)))). - G. C. Greubel, Dec 26 2019

A153860 Triangle by columns: leftmost column = (1, 0, 1, -1, 1, -1, 1, ...); columns >1 = (1, 1, 0, 0, 0, ...).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, -1, 0, 1, 1, 1, 0, 0, 1, 1, -1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 03 2009

Keywords

Comments

As an infinite lower triangular matrix M; M * [1,2,3,...] = A063210: (1, 2, 6, 6, 10, 10, 14, 14, ...).
M * [1, 3, 5, 7, ...] = A047471, {1,3} mod 8.
Eigensequence of the triangle = A066983 starting (1, 1, 3, 3, 7, 9, 17, 25, ...).
Binomial transform of the triangle = A153861.
Row sums = A153284: (1, 1, 3, 1, 3, 1, 3, 1, ...).

Examples

			First few rows of the triangle:
   1;
   0, 1;
   1, 1, 1;
  -1, 0, 1, 1;
   1, 0, 0, 1, 1;
  -1, 0, 0, 0, 1, 1;
   1, 0, 0, 0, 0, 1, 1;
  -1, 0, 0, 0, 0, 0, 1, 1;
   1, 0, 0, 0, 0, 0, 0, 1, 1;
  ...
		

Crossrefs

Cf. A153861 (binomial transform), A153284 (row sums), A063210, A047471, A066983.

Programs

  • Haskell
    a153860 n k = a153860_tabl !! (n-1) !! (k-1)
    a153860_row n = a153860_tabl !! (n-1)
    a153860_tabl = [1] : [0, 1] : iterate (\(x:xs) -> -x : 0 : xs) [1, 1, 1]
    -- Reinhard Zumkeller, Dec 16 2013

Formula

Triangle by columns: leftmost column = (1, 0, 1, -1, 1, ...); columns > 1 = (1, 1, 0, 0, 0, ...).

A095345 a(n) is the length of the n-th run in A095346.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1
Offset: 1

Views

Author

Benoit Cloitre, Jun 03 2004

Keywords

Comments

This is the first sequence reached in the infinite process described in the A066983 comment line.
(a(n)) is a morphic sequence, i.e., a letter to letter projection of a fixed point of a morphism. The morphism is 1->121,2->3,1,3->313. The fixed point is the fixed point 121312131312... starting with 1. The letter-to-letter map is 1->1, 2->1, 3->3. See also the comments in A108103. - Michel Dekking, Jan 06 2018

Examples

			A095346 begins: 3,1,3,1,1,1,3,1,3,1,1,1,3,1,1,1,... and length or runs of 3's and 1's are 1,1,1,3,1,1,1,3,1,3,...
		

References

  • F. M. Dekking: "What is the long range order in the Kolakoski sequence?" in: The Mathematics of Long-Range Aperiodic Order, ed. R. V. Moody, Kluwer, Dordrecht (1997), pp. 115-125.

Crossrefs

Formula

a(n)=3 if n=2*ceiling(k*phi) for some k where phi=(1+sqrt(5))/2, otherwise a(n)=1. [Benoit Cloitre, Mar 02 2009]

A095346 a(n) is the length of the n-th run of A095345.

Original entry on oeis.org

3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1
Offset: 1

Views

Author

Benoit Cloitre, Jun 03 2004

Keywords

Comments

This is the second sequence reached in the infinite process described in A066983 comment line.
(a(n)) is a morphic sequence, i.e., a letter to letter projection of a fixed point of a morphism. The morphism is 1->121,2->3,1,3->313. The fixed point is the fixed point 3131213131213... starting with 3. The letter-to-letter map is 1->1, 2->1, 3->3. See also COMMENTS of A108103. - Michel Dekking, Jan 06 2018

Examples

			A095345 begins : 1,1,1,3,1,1,1,3,1,3,...,.. and length or runs of 1's and 3's are 3,1,3,1,1,1,...
		

References

  • F. M. Dekking: "What is the long range order in the Kolakoski sequence?" in: The Mathematics of Long-Range Aperiodic Order, ed. R. V. Moody, Kluwer, Dordrecht (1997), pp. 115-125.

Crossrefs

Formula

a(n)=3 if n=1+2*floor(phi*k) for some k where phi=(1+sqrt(5))/2, else a(n)=1. [Benoit Cloitre, Mar 02 2009]

A131132 a(n) = a(n-1) + a(n-2) + 1 if n is a multiple of 6, otherwise a(n) = a(n-1) + a(n-2).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 14, 22, 36, 58, 94, 152, 247, 399, 646, 1045, 1691, 2736, 4428, 7164, 11592, 18756, 30348, 49104, 79453, 128557, 208010, 336567, 544577, 881144, 1425722, 2306866, 3732588, 6039454, 9772042, 15811496, 25583539, 41395035, 66978574, 108373609
Offset: 0

Views

Author

N. J. A. Sloane, May 25 2008

Keywords

Comments

Also: convolution of A000045 with the period-6 sequence (0,0,0,0,0,0, 1,...). - R. J. Mathar, May 30 2008
Sequences of the form s(0)=a, s(1)= b, s(n) = s(n-1) + s(n-2) + k if n mod m = p, else s(n) = s(n-1) + s(n-2) have a form s(n) = fibonacci(n-1)*a + fibonacci(n)*b + P(x)*k. a(n) is the P(x) sequence for m=6. s(n) = fib(n)*a + fib(n-1)*b + a(n-6-p)*k. - Gary Detlefs, Dec 05 2010
a(n) is the number of compositions of n where the order of the 2 and the 3 does not matter. - Gregory L. Simay, May 18 2017

Examples

			Since 5 is not a multiple of 6, a(5) = a(4) + a(3) = 5 + 3 = 8. Since 6 is a multiple of 6, a(6) = a(5) + a(4) + 1 = 8 + 5 + 1 = 14. - _Michael B. Porter_, Jul 26 2016
		

Crossrefs

Programs

  • Maple
    A131132:=proc(n) option remember; local t1; if n <= 2 then RETURN(1); fi: if n mod 6 = 1 then t1:=1 else t1:=0; fi: procname(n-1)+procname(n-2)+t1; end; [seq(A131132(n), n=1..100)]; # N. J. A. Sloane, May 25 2008; Typo corrected by R. J. Mathar, May 30 2008
  • Mathematica
    Print[Table[Round[(1 + Sqrt[5])/8 Fibonacci[n + 3]], {n, 0, 50}]] ;
    Print[RecurrenceTable[{c[n] == c[n - 1] + c[n - 2] + c[n - 6] - c[n - 7] - c[n - 8], c[0] == 1, c[1] == 1, c[2] == 2, c[3] == 3, c[4] == 5, c[5] == 8, c[6] == 14, c[7] == 22}, c, {n, 0, 50}]] ;  (* John M. Campbell, Jul 07 2016 *)
    LinearRecurrence[{1, 1, 0, 0, 0, 1, -1, -1}, {1, 1, 2, 3, 5, 8, 14, 22}, 40] (* Vincenzo Librandi, Jul 07 2016 *)

Formula

O.g.f.: 1/((1-x^6)(1 - x - x^2)). - R. J. Mathar, May 30 2008
a(n) = ((-1)^n-1)/6 + A099837(n+3)/12 + A000045(n+4)/4 + A057079(n)/12. - R. J. Mathar, Dec 07 2010
a(n) = floor(A066983(n+4)/3). - Gary Detlefs, Dec 19 2010
a(n) = round((1 + sqrt(5))/8 A000045(n+3)). - John M. Campbell, Jul 06 2016
a(n) = (number of compositions of n consisting of only 1 or 2 or 6) - (number of compositions with only 7 or ((1 or 2) and 7)) - (number of compositions with only 8 or ((1 or 2) and 8)). The "or" is inclusive. - Gregory L. Simay, May 25 2017

Extensions

More specific name from R. J. Mathar, Dec 09 2009

A124389 A square array of Kolakoski string lengths, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 7, 5, 7, 1, 1, 1, 1, 9, 17, 7, 9, 1, 1, 1, 1, 17, 25, 31, 9, 11, 1, 1, 1, 1, 25, 61, 49, 49, 11, 13, 1, 1, 1, 1, 43, 109, 145, 81, 71, 13, 15, 1, 1, 1
Offset: 0

Views

Author

Paul Barry, Oct 30 2006

Keywords

Comments

Rows of square array include A066983,A095342,A095343,A095344. See A066983 for description of Kolakoski strings. Sums of antidiagonals is A124390.

Examples

			Square array begins
1, 1, 1, 1, 1, 1, 1...
1, 1, 1, 3, 3, 7, 9...
1, 1, 1, 5, 5, 17, 25...
1, 1, 1, 7, 7, 31, 49...
1, 1, 1, 9, 9, 49, 81...
1, 1, 1, 11, 11, 71, 121...
1, 1, 1, 13, 13, 97, 169...
As a number triangle, triangle begins
1,
1, 1,
1, 1, 1,
1, 1, 1, 1,
1, 3, 1, 1, 1,
1, 3, 5, 1, 1, 1,
1, 7, 5, 7, 1, 1, 1,
1, 9, 17, 7, 9, 1, 1, 1,
1, 17, 25, 31, 9, 11, 1, 1, 1
		

Formula

Row k of square array has g.f. (1+x-kx^2)/((1+x)(1-x-kx^2))
Previous Showing 11-16 of 16 results.