cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A049579 Numbers k such that prime(k)+2 divides (prime(k)-1)!.

Original entry on oeis.org

4, 6, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 42, 44, 46, 47, 48, 50, 51, 53, 54, 55, 56, 58, 59, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that prime(k+1) - prime(k) does not divide prime(k+1) + prime(k). These are the numbers k for which prime(k+1) - prime(k) > 2. - Thomas Ordowski, Mar 31 2022
If we prepend 1, the first differences are A251092 (see also A175632). The complement is A029707. - Gus Wiseman, Dec 03 2024

Examples

			prime(4) = 7, 6!+1 = 721 gives residue 1 when divided by prime(4)+2 = 9.
		

Crossrefs

The first differences are A251092 except first term, run-lengths A373819.
The complement is A029707.
Runs of terms differing by one have lengths A027833, min A107770, max A155752.
A000040 lists the primes, differences A001223 (run-lengths A333254, A373821).
A038664 finds the first prime gap of difference 2n.
A046933 counts composite numbers between primes.
A071148 gives partial sums of odd primes.

Programs

  • Mathematica
    pnmQ[n_]:=Module[{p=Prime[n]},Mod[(p-1)!+1,p+2]==1]; Select[Range[ 100],pnmQ] (* Harvey P. Dale, Jun 24 2017 *)
  • PARI
    isok(n) = (((prime(n)-1)! + 1) % (prime(n)+2)) == 1; \\ Michel Marcus, Dec 31 2013

Extensions

Definition edited by Thomas Ordowski, Mar 31 2022

A210361 Prime numbers p such that x^2 + x + p produces primes for x = 0..2 but not x = 3.

Original entry on oeis.org

107, 191, 311, 461, 821, 857, 881, 1301, 1871, 1997, 2081, 2237, 2267, 2657, 3251, 3461, 3671, 4517, 4967, 5231, 5477, 5501, 5651, 6197, 6827, 7877, 8087, 8291, 8537, 8861, 9431, 10427, 10457, 11171, 12917, 13001, 13691, 13757, 13877, 14081, 14321, 15641
Offset: 1

Views

Author

T. D. Noe, Apr 05 2012

Keywords

Comments

The first term is A164926(3).

Crossrefs

Programs

  • Mathematica
    lookfor = 3; t = {}; n = 0; While[Length[t] < 50, n++; c = Prime[n]; i = 1; While[PrimeQ[i^2 + i + c], i++]; If[i == lookfor, AppendTo[t, c]]]; t

A210362 Prime numbers p such that x^2 + x + p produces primes for x = 0..3 but not x = 4.

Original entry on oeis.org

5, 101, 227, 1091, 1481, 1487, 3917, 4127, 4787, 8231, 9461, 10331, 11777, 12107, 14627, 16061, 20747, 25577, 27737, 29021, 32297, 33347, 35531, 35591, 36467, 38447, 39227, 41177, 42461, 44267, 44531, 49031, 59441, 69191, 77237, 79811, 80777, 93251, 93491
Offset: 1

Views

Author

T. D. Noe, Apr 05 2012

Keywords

Comments

The first term is A164926(4).

Crossrefs

Programs

  • Mathematica
    lookfor = 4; t = {}; n = 0; While[Length[t] < 50, n++; c = Prime[n]; i = 1; While[PrimeQ[i^2 + i + c], i++]; If[i == lookfor, AppendTo[t, c]]]; t
    Select[Prime[Range[10000]],AllTrue[#+{2,6,12},PrimeQ]&&!PrimeQ[#+20]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 26 2015 *)
    Select[Prime[Range[10000]],Boole[PrimeQ[#+{2,6,12,20}]]=={1,1,1,0}&] (* Harvey P. Dale, Nov 17 2024 *)

A210363 Prime numbers p such that x^2 + x + p produces primes for x = 0..4 but not x = 5.

Original entry on oeis.org

347, 641, 1427, 2687, 4001, 4637, 4931, 19421, 21011, 22271, 23741, 26711, 27941, 32057, 43781, 45821, 55331, 55817, 68207, 71327, 91571, 128657, 165701, 167621, 172421, 179897, 191447, 193871, 205421, 234191, 239231, 258107, 258611, 259157, 278807, 290021
Offset: 1

Views

Author

T. D. Noe, Apr 05 2012

Keywords

Comments

The first term is A164926(5).

Crossrefs

Programs

  • Mathematica
    lookfor = 5; t = {}; n = 0; While[Length[t] < 50, n++; c = Prime[n]; i = 1; While[PrimeQ[i^2 + i + c], i++]; If[i == lookfor, AppendTo[t, c]]]; t
    Select[Prime[Range[26000]],AllTrue[#+{2,6,12,20},PrimeQ] && !PrimeQ[ #+30]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 13 2017 *)
    Select[Prime[Range[26000]],Boole[PrimeQ[#+{2,6,12,20,30}]]=={1,1,1,1,0}&] (* Harvey P. Dale, May 29 2025 *)

A210364 Prime numbers p such that x^2 + x + p produces primes for x = 0..5 but not x = 6.

Original entry on oeis.org

1607, 3527, 13901, 31247, 33617, 55661, 68897, 97367, 166841, 195731, 221717, 347981, 348431, 354371, 416387, 506327, 548831, 566537, 929057, 954257, 1246367, 1265081, 1358801, 1505087, 1538081, 1595051, 1634441, 1749257, 2200811, 2322107, 2641547, 2697971
Offset: 1

Views

Author

T. D. Noe, Apr 05 2012

Keywords

Comments

The first term is A164926(6).

Crossrefs

Programs

  • Mathematica
    lookfor = 6; t = {}; n = 0; While[Length[t] < 50, n++; c = Prime[n]; i = 1; While[PrimeQ[i^2 + i + c], i++]; If[i == lookfor, AppendTo[t, c]]]; t

A210365 Prime numbers p such that x^2 + x + p produces primes for x = 0..6 but not x = 7.

Original entry on oeis.org

1277, 28277, 113147, 421697, 665111, 1164587, 1615631, 2798921, 2846771, 3053747, 5071667, 5093507, 5344247, 5706641, 6383051, 8396777, 10732817, 10812407, 11920367, 13176587, 16197947, 16462541, 16655447, 16943471, 17807831, 18102101, 20488901, 23421311
Offset: 1

Views

Author

T. D. Noe, Apr 05 2012

Keywords

Comments

The first term is A164926(7).

Crossrefs

Programs

  • Mathematica
    lookfor = 7; t = {}; n = 0; While[Length[t] < 30, n++; c = Prime[n]; i = 1; While[PrimeQ[i^2 + i + c], i++]; If[i == lookfor, AppendTo[t, c]]]; t

A373819 Run-lengths (differing by 0) of the run-lengths (differing by 2) of the odd primes.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 3, 2, 4, 3, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 10, 2, 4, 1, 7, 1, 4, 1, 3, 1, 2, 1, 1, 1, 2, 1, 18, 3, 2, 1, 2, 1, 17, 2, 1, 2, 2, 1, 6, 1, 9, 1, 3, 1, 1, 1, 1, 1, 1, 1, 8, 1, 3, 1, 2, 2, 15, 1, 1, 1, 4, 1, 1, 1, 1, 1, 7, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2024

Keywords

Comments

Run-lengths of A251092.

Examples

			The odd primes begin:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with runs:
   3   5   7
  11  13
  17  19
  23
  29  31
  37
  41  43
  47
  53
  59  61
  67
  71  73
with lengths:
3, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, ...
which have runs beginning:
  3
  2 2
  1
  2
  1
  2
  1 1
  2
  1
  2
  1 1 1 1
  2 2
  1 1 1
with lengths a(n).
		

Crossrefs

Run-lengths of A251092.
For antiruns we have A373820, run-lengths of A027833 (if we prepend 1).
Positions of first appearances are A373825, sorted A373824.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
For composite runs: A005381, A054265, A068780, A373403, A373404.

Programs

  • Mathematica
    Length/@Split[Length/@Split[Select[Range[3,1000], PrimeQ],#1+2==#2&]//Most]//Most

A373824 Sorted positions of first appearances in the run-lengths (differing by 0) of the run-lengths (differing by 2) of the odd primes.

Original entry on oeis.org

1, 2, 11, 13, 29, 33, 45, 51, 57, 59, 69, 75, 105, 129, 211, 227, 301, 313, 321, 341, 407, 413, 447, 459, 537, 679, 709, 767, 1113, 1301, 1405, 1411, 1429, 1439, 1709, 1829, 1923, 2491, 2543, 2791, 2865, 3301, 3471, 3641, 4199, 4611, 5181, 5231, 6345, 6555
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2024

Keywords

Comments

Sorted positions of first appearances in A373819.

Examples

			The runs of odd primes differing by 2 begin:
   3   5   7
  11  13
  17  19
  23
  29  31
  37
  41  43
  47
  53
  59  61
  67
  71  73
  79
with lengths:
3, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, ...
which have runs beginning:
  3
  2 2
  1
  2
  1
  2
  1 1
  2
  1
  2
  1 1 1 1
  2 2
  1 1 1
with lengths:
1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 3, 2, 4, 3,...
with sorted positions of first appearances a(n).
		

Crossrefs

Sorted firsts of A373819 (run-lengths of A251092).
The unsorted version is A373825.
For antiruns we have A373826, unsorted A373827.
A000040 lists the primes.
A001223 gives differences of consecutive primes (firsts A073051), run-lengths A333254 (firsts A335406), run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths, run-lengths of A027833.
For composite runs: A005381, A054265, A068780, A373403, A373404.

Programs

  • Mathematica
    t=Length/@Split[Length/@Split[Select[Range[3,10000],PrimeQ],#1+2==#2&]];
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A107986 Composite numbers of the form p+2 where p is prime.

Original entry on oeis.org

4, 9, 15, 21, 25, 33, 39, 45, 49, 55, 63, 69, 75, 81, 85, 91, 99, 105, 111, 115, 129, 133, 141, 153, 159, 165, 169, 175, 183, 195, 201, 213, 225, 231, 235, 243, 253, 259, 265, 273, 279, 285, 295, 309, 315, 319, 333, 339, 351, 355, 361, 369, 375, 381, 385, 391
Offset: 1

Views

Author

Cino Hilliard, Jun 13 2005

Keywords

Comments

This sequence is analogous to the sequence formed by the Goldbach-Euler conjecture that every even number greater than 2 is the sum of 2 primes. If p + 2 is prime then p and p + 2 are twin primes. The number of terms in this sequence is infinite. This follows immediately from the proof that the number of primes p is infinite. Conjecture: The ratio of the number of terms in this sequence to Pi(n) tends to a limit < 1.
The first term in this sequence that is not also in A062721 is 45 = 3^2 * 5. - Alonso del Arte, May 03 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[4, 399], Not[PrimeQ[#]] && PrimeQ[# - 2] &] (* Alonso del Arte, May 03 2014 *)

Formula

a(n) = A067774(n) + 2. - Amiram Eldar, Jul 05 2024

A263091 Primes p for which A049820(x) = p has no solution.

Original entry on oeis.org

7, 13, 19, 37, 43, 67, 79, 103, 109, 113, 131, 163, 167, 193, 229, 241, 251, 257, 271, 293, 307, 313, 353, 359, 379, 383, 397, 401, 439, 463, 479, 487, 491, 499, 503, 509, 563, 571, 647, 653, 661, 673, 701, 739, 743, 757, 761, 773, 823, 859, 863, 883, 887, 911, 937, 941, 953, 967, 971, 977, 983, 1009, 1093, 1103, 1109, 1171, 1181, 1193, 1217, 1279, 1283, 1291, 1297, 1307, 1321, 1361
Offset: 1

Views

Author

Antti Karttunen, Oct 11 2015

Keywords

Comments

Primes p that there is no such k for which k - d(k) = p, where d(k) is the number of divisors of k (A000005).

Crossrefs

Complement among primes: A263090.
Intersection of A000040 and A045765.
Subsequence of A067774 (A049591).

Programs

  • Mathematica
    lim = 10000; s = Select[Complement[Range@ lim, Sort@ DeleteDuplicates@ Table[n - DivisorSigma[0, n], {n, lim}]], PrimeQ]; Take[s, 76] (* Michael De Vlieger, Oct 13 2015 *)
  • PARI
    allocatemem(123456789);
    uplim1 = 2162160 + 320; \\ = A002182(41) + A002183(41).
    v060990 = vector(uplim1);
    for(n=3, uplim1, v060990[n-numdiv(n)]++);
    A060990 = n -> if(!n,2,v060990[n]);
    n=0; forprime(p=2, 524287, if((0 == A060990(p)), n++; write("b263091.txt", n, " ", p)));
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A263091 (MATCHING-POS 1 1 (lambda (n) (and (= 1 (A010051 n)) (zero? (A060990 n))))))
Previous Showing 21-30 of 45 results. Next