cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A267032 Difference between smallest integer square >= 10^(2*n+1) and 10^(2*n+1).

Original entry on oeis.org

6, 24, 489, 4569, 14129, 147984, 2149284, 25191729, 621806289, 5259630921, 19998666404, 102500044289, 3925449108561, 13071591635856, 42248099518244, 4224809951824400, 43007675962234436, 506034404021388356, 6997839444766224, 699783944476622400
Offset: 0

Views

Author

Gwillim Law, Jan 09 2016

Keywords

Examples

			a(0) = 6 = 4^2 - 10; a(1) = 24 = 32^2 - 1000.
		

Crossrefs

Cf. A238454 (a similar sequence with powers of 2). - Michel Marcus, Jan 17 2016

Programs

  • Maple
    f:= proc(n) local s;
      s:= isqrt(10^(2*n+1));
      if s^2 < 10^(2*n+1) then s:= s+1 fi;
      s^2 - 10^(2*n+1)
    end proc:
    seq(f(n),n=0..40); # Robert Israel, Jan 17 2016
  • Mathematica
    dsis[n_]:=Module[{c=10^(2n+1)},(Floor[Sqrt[c]]+1)^2-c]; Array[dsis,20,0] (* Harvey P. Dale, Apr 27 2019 *)
  • Python
    from math import isqrt
    def A267032(n): return (isqrt(m:=10**((n<<1)+1))+1)**2-m # Chai Wah Wu, Apr 27 2023

Formula

a(n) = A068527(A013715(n)). - Michel Marcus, Jan 17 2016

A287016 a(n) = smallest number k such that A071904(n) + k^2 is a perfect square.

Original entry on oeis.org

0, 1, 2, 0, 3, 4, 1, 5, 2, 0, 7, 3, 8, 1, 4, 10, 5, 2, 0, 6, 13, 3, 14, 7, 1, 4, 17, 9, 2, 5, 0, 19, 10, 20, 6, 3, 22, 1, 12, 7, 4, 13, 25, 8, 2, 0, 5, 9, 28, 29, 16, 3, 6, 1, 32, 11, 18, 7, 4, 34, 19, 12, 35, 2, 0, 5, 21, 38, 9, 14, 3, 40, 6, 1, 15, 10, 24
Offset: 1

Views

Author

Keywords

Examples

			The third odd composite number is A071904(3) = 21. and 21+2^2 = 25 = 5^2, so a(3) = 2.
		

Crossrefs

Subsequence of A068527.

Programs

  • Mathematica
    q[n_] := SelectFirst[Range[0, (n-1)/2], IntegerQ@ Sqrt[#^2 + n] &]; q /@ Select[Range[1, 300, 2], CompositeQ] (* Giovanni Resta, May 18 2017 *)
  • Python
    from sympy import primepi, divisors
    from sympy.ntheory.primetest import is_square
    def A287016(n):
        if n == 1: return 0
        m, k = n, primepi(n) + n + (n>>1)
        while m != k:
            m, k = k, primepi(k) + n + (k>>1)
        return 0 if is_square(int(m)) else -(d:=divisors(m))[l:=(len(d)>>1)-1]+d[l+1]>>1 # Chai Wah Wu, Aug 02 2024

Formula

a(m) = 0 for m>0 in A037040, the corresponding odd composites being in A016754\{1}. - Michel Marcus, May 19 2017

Extensions

More terms from Giovanni Resta, May 18 2017

A333884 Difference between smallest cube > n and n.

Original entry on oeis.org

1, 7, 6, 5, 4, 3, 2, 1, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 08 2020

Keywords

Comments

a(n) is the smallest positive number k such that n + k is a cube.

Crossrefs

Programs

  • Mathematica
    Table[Floor[n^(1/3) + 1]^3 - n, {n, 0, 80}]

Formula

a(n) = floor(n^(1/3) + 1)^3 - n.

A343037 Triangle T(n,k), n >= 2, 1 <= k <= n-1, read by rows, where T(n,k) is the difference between smallest square >= binomial(n,k) and binomial(n,k).

Original entry on oeis.org

2, 1, 1, 0, 3, 0, 4, 6, 6, 4, 3, 1, 5, 1, 3, 2, 4, 1, 1, 4, 2, 1, 8, 8, 11, 8, 8, 1, 0, 0, 16, 18, 18, 16, 0, 0, 6, 4, 1, 15, 4, 15, 1, 4, 6, 5, 9, 4, 31, 22, 22, 31, 4, 9, 5, 4, 15, 5, 34, 49, 37, 49, 34, 5, 15, 4, 3, 3, 3, 14, 9, 48, 48, 9, 14, 3, 3, 3, 2, 9, 36, 23, 23, 22, 49, 22, 23, 23, 36, 9, 2
Offset: 2

Views

Author

Seiichi Manyama, Apr 03 2021

Keywords

Examples

			binomial(50,3) = binomial(50,47) = 140^2. So T(50,3) = T(50,47) = 0.
Triangle begins:
  2;
  1,  1;
  0,  3,  0;
  4,  6,  6,  4;
  3,  1,  5,  1,   3;
  2,  4,  1,  1,   4,  2;
  1,  8,  8, 11,   8,  8,   1;
  0,  0, 16, 18,  18, 16,   0,   0;
  6,  4,  1, 15,   4, 15,   1,   4,  6;
  5,  9,  4, 31,  22, 22,  31,   4,  9,  5;
  4, 15,  5, 34,  49, 37,  49,  34,  5, 15,   4;
  3,  3,  3, 14,   9, 48,  48,   9, 14,  3,   3,  3;
  2,  9, 36, 23,  23, 22,  49,  22, 23, 23,  36,  9,  2;
  1, 16, 29,  4,  22, 36, 126, 126, 36, 22,   4, 29, 16, 1;
  0,  1, 16, 29, 121, 92,   9, 126,  9, 92, 121, 29, 16, 1, 0;
		

Crossrefs

Column k=1..2 give A068527, A175032.

Programs

  • Mathematica
    diff[n_] := Ceiling[Sqrt[n]]^2 - n; T[n_, k_] := diff @ Binomial[n, k]; Table[T[n, k], {n, 2, 14}, {k, 1, n - 1}] // Flatten (* Amiram Eldar, Apr 03 2021 *)
  • PARI
    T(n, k) = my(m=binomial(n, k)); if(issquare(m), 0, (sqrtint(m)+1)^2-m);

Formula

T(n,k) = T(n,n-k) = A068527(binomial(n,k)).
T(n^2,1) = T(n^2,n^2-1) = 0.
If 3 <= k <= n-3 and (n,k) is not (50,3) or (50,47), T(n,k) > 0.

A070928 Smallest integer >= 0 of the form x^4 - n^3.

Original entry on oeis.org

0, 8, 54, 17, 131, 40, 282, 113, 567, 296, 1070, 673, 204, 1352, 721, 0, 1648, 729, 3141, 2000, 739, 3993, 2474, 817, 5111, 3160, 1053, 6609, 4172, 1561, 8625, 5648, 2479, 11321, 7750, 3969, 14883, 10664, 6217, 1536, 14600, 9433, 4014, 19792
Offset: 1

Views

Author

Benoit Cloitre, May 20 2002

Keywords

Comments

a(n)=0 if n is a power of 4.

Crossrefs

Cf. A068527.

Programs

  • Mathematica
    si[n_]:=Module[{k=Ceiling[Surd[n^3,4]]},While[!Integer[k^4-n^3],k++];k^4-n^3]; Array[si,50] (* Harvey P. Dale, Jan 03 2021 *)
  • PARI
    for(n=1,100,print1(ceil(n^(3/4))^4-n^3,","))

Formula

a(n) = ceiling(n^(3/4))^4 - n^3.

A070930 Smallest integer >= 0 of the form x^3 - n^4.

Original entry on oeis.org

0, 11, 44, 87, 104, 35, 343, 0, 298, 648, 984, 1216, 1230, 888, 28, 3385, 1663, 5616, 2330, 6375, 631, 4072, 7655, 11224, 14599, 17576, 0, 21400, 21719, 20584, 17671, 12632, 5095, 31295, 20250, 5543, 32463, 12016, 39196, 11353, 37527, 440, 24150
Offset: 1

Views

Author

Benoit Cloitre, May 20 2002

Keywords

Comments

a(n)=0 if n is a cube.

Crossrefs

Cf. A068527.

Programs

  • Mathematica
    Array[Ceiling[#^(4/3)]^3-#^4&,50] (* Harvey P. Dale, Dec 24 2015 *)
  • PARI
    for(n=1,100,print1(ceil(n^(4/3))^3-n^4,","))

Formula

a(n) = ceiling(n^(4/3))^3 - n^4.
Previous Showing 21-26 of 26 results.