cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A160895 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 7.

Original entry on oeis.org

1, 63, 364, 2016, 3906, 22932, 19608, 64512, 88452, 246078, 177156, 733824, 402234, 1235304, 1421784, 2064384, 1508598, 5572476, 2613660, 7874496, 7137312, 11160828, 6728904, 23482368, 12206250, 25340742, 21493836, 39529728, 21243690, 89572392
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^6 such that the quotient group Z^6 / L is C_nm x (C_m)^5 (and also (C_nm)^5 x C_m), for every m>=1. - Álvar Ibeas, Oct 30 2015

Crossrefs

Programs

  • Maple
    A160895 := proc(n) a := 1 ; for f in ifactors(n)[2] do p := op(1,f) ; e := op(2,f) ; a := a*p^(5*e-5)*(1+p+p^2+p^3+p^4+p^5) ; end do; a; end proc: # R. J. Mathar, Jul 10 2011
  • Mathematica
    A160895[n_]:=DivisorSum[n,MoebiusMu[n/# ]*#^(7-1)/EulerPhi[n]&] (* Enrique Pérez Herrero, Oct 20 2010 *)
    f[p_, e_] := p^(5*e - 5) * (p^6-1) / (p-1); ; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(50, n, sumdiv(n^5, d, if(ispower(d, 6), moebius(sqrtnint(d, 6))*sigma(n^5/d), 0))) \\ Altug Alkan, Oct 30 2014
    
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; f[i,1] = p^(5*f[i,2]-5)*(1+p+p^2+p^3+p^4+p^5); f[i,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 12 2015

Formula

a(n) = J_6(n)/J_1(n)=J_6(n)/phi(n)=A069091(n)/A000010(n), where J_k is the k-th Jordan totient function. - Enrique Pérez Herrero, Oct 20 2010
Multiplicative with a(p^e) = p^(5e-5)*(1+p+p^2+p^3+p^4+p^5). - R. J. Mathar, Jul 10 2011
For squarefree n, a(n) = A000203(n^5). - Álvar Ibeas, Oct 30 2015
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^6, where c = (1/6) * Product_{p prime} (1 + (p^5-1)/((p-1)*p^6)) = 0.3203646372... .
Sum_{k>=1} 1/a(k) = zeta(5)*zeta(6) * Product_{p prime} (1 - 2/p^6 + 1/p^11) = 1.0195114923... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^6). - Ridouane Oudra, Apr 01 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 20 2010

A194532 Jordan function ratio J_6(n)/J_2(n).

Original entry on oeis.org

1, 21, 91, 336, 651, 1911, 2451, 5376, 7371, 13671, 14763, 30576, 28731, 51471, 59241, 86016, 83811, 154791, 130683, 218736, 223041, 310023, 280371, 489216, 406875, 603351, 597051, 823536, 708123, 1244061, 924483, 1376256, 1343433, 1760031, 1595601, 2476656, 1875531, 2744343
Offset: 1

Views

Author

R. J. Mathar, Aug 28 2011

Keywords

Comments

Dirichlet convolution of A000583 with the multiplicative function which starts 1, 5, 10, 0, 26, 50, 50, 0, 0, 130, 122, 0, 170, 250, 260, 0, 290,..

Crossrefs

Programs

  • Maple
    f:= proc(n) local t;
         mul(t[1]^(4*(t[2]-1))*((t[1]^2+1)^2-t[1]^2),t=ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 14 2016
  • Mathematica
    JordanTotient[n_, k_: 1] := DivisorSum[n, #^k MoebiusMu[n/#] &] /; (n > 0) && IntegerQ@ n; Table[JordanTotient[n, 6]/JordanTotient[n, 2], {n, 12}] (* Michael De Vlieger, Jun 14 2016, after Enrique Pérez Herrero at A065959 *)
    f[p_, e_] := p^(4*(e-1))*(p^2+p+1)*(p^2-p+1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(4*(f[i,2]-1))*(f[i,1]^2+f[i,1]+1)*(f[i,1]^2-f[i,1]+1));} \\ Amiram Eldar, Nov 05 2022

Formula

a(n) = A069091(n)/A007434(n).
Multiplicative with a(p^e) = p^(4*(e-1))*(p^2+p+1)*(p^2-p+1), e>0.
Dirichlet g.f.: zeta(s-4)*product_{primes p} (1+p^(2-s)+p^(-s)).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = Product_{primes p} (1 + 1/p^3 + 1/p^5) = 1.2196771388395597011492820972459808778277319864216893177353903924... - Vaclav Kotesovec, Dec 18 2019
Sum_{n>=1} 1/a(n) = (Pi^8/14175) * Product_{p prime} (1 + 1/p^2 + 1/p^4 - 1/p^6 - 1/p^8) = 1.06469274411... . - Amiram Eldar, Nov 05 2022

A343508 a(n) = Sum_{k=1..n} gcd(k, n)^6.

Original entry on oeis.org

1, 65, 731, 4162, 15629, 47515, 117655, 266372, 532905, 1015885, 1771571, 3042422, 4826821, 7647575, 11424799, 17047816, 24137585, 34638825, 47045899, 65047898, 86005805, 115152115, 148035911, 194717932, 244203145, 313743365, 388487763, 489680110, 594823349
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Crossrefs

Column 6 of A343510.
Cf. A000010, A001160 (sigma_5(n)), A069091, A343520.

Programs

  • Mathematica
    a[n_] := Sum[GCD[k, n]^6, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
    f[p_, e_] := p^(e-1)*(p^(5*e+6) - p^(5*e) - p + 1)/(p^5-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^6);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^6);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 5));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+57*x^k+302*x^(2*k)+302*x^(3*k)+57*x^(4*k)+x^(5*k))/(1-x^k)^7))

Formula

a(n) = Sum_{d|n} phi(n/d) * d^6.
a(n) = Sum_{d|n} mu(n/d) * d * sigma_5(d).
G.f.: Sum_{k >= 1} phi(k) * x^k * (1 + 57*x^k + 302*x^(2*k) + 302*x^(3*k) + 57*x^(4*k) + x^(5*k))/(1 - x^k)^7.
Dirichlet g.f.: zeta(s-1) * zeta(s-6) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021
Sum_{k=1..n} a(k) ~ Pi^6 * n^7 / (6615*zeta(7)). - Vaclav Kotesovec, May 20 2021
Multiplicative with a(p^e) = p^(e-1)*(p^(5*e+6) - p^(5*e) - p + 1)/(p^5-1). - Amiram Eldar, Nov 22 2022
a(n) = Sum_{1 <= i_1, ..., i_6 <= n} gcd(i_1, ..., i_6, n) = Sum_{d divides n} d * J_6(n/d), where the Jordan totient function J_6(n) = A069091(n). - Peter Bala, Jan 29 2024

A192000 Sum of binomial numbers A000332(k+3), with k in the reduced residue system modulo n.

Original entry on oeis.org

0, 1, 6, 16, 56, 71, 252, 296, 651, 721, 2002, 1282, 4368, 3402, 5782, 6672, 15504, 7947, 26334, 15702, 28868, 28457, 65780, 30212, 85580, 63063, 103284, 81452, 201376, 66102, 278256, 174624, 255794, 228684, 383166, 206838, 658008, 391419, 576394, 413244, 1086008
Offset: 1

Views

Author

Wolfdieter Lang, Jun 22 2011

Keywords

Comments

The reduced residue system modulo n used here is the set of numbers k from the set {0,1,...,n-1} which satisfy gcd(k,n)=1. There are phi(n) = A000010(n) such numbers k.
This is the m=4 member of a family of sequences, call them rmnS(m) (reduced mod n sum), with entries rmnS(m;n):=sum(binomial(k+m-1,m),0<=k<=n-1 with gcd(k,n)=1), m>=0, n>=1. Recall gcd(0,n)=n.
The members for m=0, 1, 2 and 3 are A000010, A023896, A127415, and A189918, respectively, where in the m=1 and 2 cases the offset for n=1 should be taken as 0 (not 1).

Examples

			a(6) = A000332(4) + A000292(8)= 1 + 70 = 71.
a(6) = (6/6!)*(6*3666*(1/3) + 5*137*2 - 182) = 71.
a(12) = A000332(4) + A000332(8) + A000332(10) + A000332(14) = 1 + 70 + 210 + 1001 = 1282.
a(12) = (12/6!)*(12*18258*(1/3) + 5*407*2 - 182) = 1282.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, if (gcd(n,k) == 1, binomial(k+3, 4))); \\ Michel Marcus, Feb 01 2016

Formula

a(n) = sum(A000332(k+3), 0<=k<=n-1, gcd(k,n)=1), n>=1.
a(n) = (n/6!)*(n*(6*n^3+45*n^2+110*n+90)*P(1,n) + 5*(2*n^2+9*n+11)*P(-1,n) - P(-3,n)), n>=2, with P(k,n):= J(k,n)/n^k, where J(k,n) is the Jordan function (see A000010, A007434, A059376 - A059378, A069091 - A069095).

Extensions

More terms from Michel Marcus, Feb 01 2016

A255915 Triangle read by rows: T(n,k) = A239672(n)/(A239672(k) * A239672(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 63, 1, 1, 728, 728, 1, 1, 4032, 46592, 4032, 1, 1, 15624, 999936, 999936, 15624, 1, 1, 45864, 11374272, 62995968, 11374272, 45864, 1, 1, 117648, 85647744, 1838132352, 1838132352, 85647744, 117648, 1, 1, 258048, 481886208, 30358831104, 117640470528
Offset: 0

Views

Author

Tom Edgar, Mar 10 2015

Keywords

Comments

These are the generalized binomial coefficients associated with the Jordan totient function J_6 given in A069091.
Another name might be the 6-totienomial coefficients.

Examples

			The first five terms in the sixth Jordan totient function are 1, 63, 728, 4032, 15624 and so T(4,2) = 4032*728*63*1/((63*1)*(63*1)) = 46592 and T(5,3) = 15624*4032*728*63*1/((728*63*1)*(63*1)) = 999936.
The triangle begins:
1;
1, 1;
1, 63, 1;
1, 728, 728, 1;
1, 4032, 46592, 4032, 1;
1, 15624, 999936, 999936, 15624, 1;
1, 45864, 11374272, 62995968, 11374272, 45864, 1
		

Crossrefs

Programs

  • Sage
    q=100 #change q for more rows
    P=[0]+[i^6*prod([1-1/p^6 for p in prime_divisors(i)]) for i in [1..q]]
    Triangle=[[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.

Formula

T(n,k) = A239672(n)/(A239672(k) * A239672(n-k)).
T(n,k) = Product_{i=1..n} A069091(i)/(Product_{i=1..k} A069091(i)*Product_{i=1..n-k} A069091(i)).
T(n,k) = A069091(n)/n*(k/A069091(k)*T(n-1,k-1)+(n-k)/A069091(n-k)*T(n-1,k)).

A336488 Values taken by all the Jordan totient functions J_k(m) for k >= 1 and m >= 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 12, 15, 16, 18, 20, 22, 24, 26, 28, 30, 31, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 63, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96, 100, 102, 104, 106, 108, 110, 112, 116, 120, 124, 126, 127, 128, 130, 132, 136, 138, 140, 144, 148
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2020

Keywords

Comments

The asymptotic density of this sequence is 0 (Rao and Murty, 1979).
First differs from A221178 at n = 75, since a(75) = J_3(6) = 182 is not a term of A221178.

Crossrefs

Programs

  • Mathematica
    phiQ[m_] := Select[Range[m + 1, 2 m*Product[(1 - 1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1] != {}; jor[k_, n_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; jorval[k_, mx_] := jor[k, #] & /@ Range[Floor@Surd[mx*Zeta[k], k]]; mx = 300; Select[Union @ Flatten[{Select[Range[mx], phiQ], jorval[#, mx] & /@ Range[2, Floor[Log2[mx]]]}], # <= mx &] (* using code by Jean-François Alcover at A002202 *)
Previous Showing 11-16 of 16 results.