cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A163681 Smaller prime p in Ormiston pairs (p, q) with q - p = 72.

Original entry on oeis.org

1290719, 1477219, 1802419, 2520697, 2902519, 3327419, 3391697, 3498119, 4596419, 4641919, 4709519, 5521819, 5835619, 6091031, 6267419, 6642919, 6943919, 7118519, 7480519, 8241019, 8630519, 8934319, 8946919, 9859697
Offset: 1

Views

Author

Klaus Brockhaus, Aug 03 2009

Keywords

Comments

An Ormiston pair (or rearrangement prime pair) is a pair of consecutive primes that use the same digits in a different order.

Examples

			(1802419, 1802491) is an Ormiston pair with gap 72, so 1802419 is in the sequence.
		

Crossrefs

Subsequence of A069567.

Programs

  • Magma
    [ p: p in PrimesUpTo(10000000) | q-p eq 72 and a eq b where a is Sort(Intseq(p)) where b is Sort(Intseq(q)) where q is NextPrime(p) ];
  • Mathematica
    Transpose[Select[Select[Partition[Prime[Range[800000]],2,1],Last[#]-First[#]==72&],Sort[IntegerDigits[First[#]]]==Sort[IntegerDigits[Last[#]]]&]][[1]]  (* Harvey P. Dale, Feb 14 2011 *)

Extensions

Keyword base added by Klaus Brockhaus, Sep 18 2009

A217372 Initial prime in the first Ormiston n-tuple.

Original entry on oeis.org

2, 1913, 11117123, 6607882123, 20847942560791
Offset: 1

Views

Author

Jens Kruse Andersen, Oct 20 2012

Keywords

Comments

An Ormiston n-tuple is n consecutive primes containing the same decimal digits in different order. a(5) found by Giovanni Resta. a(6) may be 166389896360719.

Examples

			(1913, 1931) is the first case of two consecutive primes with the same digits. The first 3-, 4- and 5-tuples are: (11117123, 11117213, 11117321), (6607882123, 6607882213, 6607882231, 6607882321), (20847942560791, 20847942560917, 20847942560971, 20847942561079, 20847942561097).
		

Crossrefs

Cf. A069567 (Ormiston pairs), A075093 (triples), A161160 (quadruples), A217797 (5-tuples)

A228135 Smaller of two consecutive semiprimes which are anagrams of each other.

Original entry on oeis.org

278, 1945, 2545, 4045, 5389, 9134, 9289, 12634, 17678, 23578, 25034, 25178, 27289, 32245, 32689, 34889, 35078, 40234, 42289, 47578, 47789, 48979, 50579, 51434, 51589, 55534, 55634, 55934, 57289, 57779, 69334, 69478, 70178, 70234, 71945, 71989, 72134, 76345
Offset: 1

Views

Author

Michel Lagneau, Aug 12 2013

Keywords

Comments

Given the n-th semiprime, it is occasionally possible to form the (n+1)-th semiprime using the same digits in a different order.
"Anagram" means that both semiprimes must not only use the same digits but must use each digit the same number of times.

Examples

			278 and 287 are two successive semiprimes.
		

Crossrefs

Programs

  • Maple
    with(numtheory):T:=array(1..50000):k:=0:for i from 1 to 200000 do:if bigomega(i)=2 then k:=k+1:T[k]:=i:else fi:od:for n from 1 to k-1 do:p1:=T[n]:p2:= T[n+1]:pp1:=convert(p1,base,10): pp2:=convert(p2,base,10):n1:=sort(pp1):n2:=sort(pp2): if n1=n2 then printf(`%d, `,p1):else fi:od:
  • Mathematica
    range[n_Integer]:=Select[Range@n,PrimeOmega@#==2&];
    anagramQ[l_List]:=(l1=Sort@#&/@IntegerDigits@l;l1[[1]]==l1[[2]]);
    Select[Partition[range@100000,2,1],anagramQ]\[Transpose]//First (* Hans Rudolf Widmer, Oct 06 2021 *)

A156117 Smaller of two successive primes using the same digits such that the hundreds digit is the most significant digit to differ.

Original entry on oeis.org

48091, 64091, 116293, 139091, 145091, 162091, 244091, 250091, 276781, 321091, 359783, 456293, 558091, 623071, 666091, 684091, 708091, 771091, 810091, 831091, 836071, 873091, 877091, 897781, 939091, 1032071, 1041091, 1065091, 1087091
Offset: 1

Views

Author

Ki Punches, Feb 12 2009

Keywords

Comments

One of the other two less significant digits (and possibly both) will also differ.
Most of the Ormiston prime pairs referenced in A069567 differ only in the two least significant digits.

Examples

			18379 is not included since the next prime 18397 does not change the hundreds digit even though the same digits are used.
64091 is included because the next prime is 64109 which uses the same digits and the hundreds digit is the most significant digit changed.
29610901 is not included because the next prime is 29611009 which differs in the thousands digit.
		

Crossrefs

Cf. A069567 properly contains this sequence.

Extensions

Edited and extended by Ray Chandler, Feb 19 2009

A337784 Smaller of two consecutive oblong numbers which are anagrams of each other.

Original entry on oeis.org

23256, 530712, 809100, 11692980, 17812620, 20245500, 22834062, 23527350, 29154600, 83768256, 182236500, 189847062, 506227500, 600127506, 992218500, 1363566402, 1640209500, 2175895962, 2422657620, 2477899062, 2520190602, 3041687952, 3764129256, 4760103042
Offset: 1

Views

Author

Antonio Roldán, Sep 21 2020

Keywords

Comments

All terms are multiples of 9.
The indices of these oblong numbers are 152, 728, 899, 3419, 4220, 4499, 4778, 4850, 5399, 9152, 13499, 13778, 22499, 24497, 31499, 36926, 40499, 46646, 49220, 49778, 50201, 55151, 61352, 68993.

Examples

			530712 is in the sequence because it is an oblong number, 530712 = 728 * 729, and the next oblong number, 532170 = 729 * 730, is an anagram of 530712.
		

Crossrefs

Subsequence of A008591.

Programs

  • Mathematica
    s = {}; o1 = 1; d1 = Sort @ IntegerDigits[o1]; Do[o2 = n*(n + 1); d2 = Sort @ IntegerDigits[o2]; If[d2 == d1, AppendTo[s, o1]]; o1 = o2; d1 = d2, {n, 2, 70000}]; s (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    ok(k) = {my(b, m=0); if(issquare(4*k + 1), b=truncate(sqrt(4*k + 1) - 1)/2; if(vecsort(digits(k)) == vecsort(digits((b + 1)*(b + 2))), m = 1)); m}
Previous Showing 21-25 of 25 results.