cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A108567 a(0) = 0, a(1) = a(2) = 1, a(3) = 2, a(4) = 4, a(5) = 8, a(6) = 16, for n>5: a(n+1) = SORT[ a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6)], where SORT places digits in ascending order and deletes 0's.

Original entry on oeis.org

0, 1, 1, 2, 4, 8, 16, 23, 55, 19, 127, 225, 347, 128, 249, 115, 112, 133, 139, 1223, 299, 227, 2248, 1348, 1567, 157, 679, 2556, 2788, 11334, 2249, 1233, 2699, 23358, 12467, 12568, 5689, 2366, 368, 15559, 23577, 24579, 4678, 16678, 5788, 12279, 11338
Offset: 0

Views

Author

Jonathan Vos Post, Jun 11 2005

Keywords

Comments

T. D. Noe found that the maximum is attained at a(4992871827) = 234444568999. The periodic part of this sequence begins at a(3544675600) and has length 5158842780.

Examples

			a(7) = SORT[a(0) + a(1) + a(2) + a(3) + a(4) + a(5) + a(6)] = SORT[0 + 1 + 1 + 2 + 4 + 8 + 16] = SORT[32] = 23.
a(8) = SORT[a(1) + a(2) + a(3) + a(4) + a(5) + a(6) + a(7)] = SORT[1 + 1 + 2 + 4 + 8 + 16 + 23] = SORT[55] = 55.
a(9) = SORT[a(2) + a(3) + a(4) + a(5) + a(6) + a(7) + a(8)] = SORT[1 + 2 + 4 + 8 + 16 + 23 + 55] = SORT[109] = 19.
		

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,FromDigits[Sort[ IntegerDigits[ a+b+c+d+e+f+g]/.(0->Nothing)]]}; NestList[nxt,{0,1,1,2,4,8,16},50][[All,1]] (* Harvey P. Dale, May 09 2020 *)

A346296 a(0) = 1; thereafter a(n) = 2*a(n-1) + 1, with digits rearranged into nondecreasing order.

Original entry on oeis.org

1, 3, 7, 15, 13, 27, 55, 111, 223, 447, 589, 1179, 2359, 1479, 2599, 1599, 1399, 2799, 5599, 11199, 22399, 44799, 58999, 117999, 235999, 147999, 259999, 159999, 139999, 279999, 559999, 1119999, 2239999, 4479999, 5899999, 11799999, 23599999, 14799999, 25999999
Offset: 0

Views

Author

Ctibor O. Zizka, Jul 13 2021

Keywords

Examples

			a(3) = A004185(2*7+1) = A004185(15) = 15.
a(4) = A004185(2*15+1) = A004185(31) = 13.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = FromDigits @ Sort @ IntegerDigits[2*a[n - 1] + 1]; Array[a, 45, 0] (* Amiram Eldar, Jul 13 2021 *)
    NestList[FromDigits[Sort[IntegerDigits[2#+1]]]&,1,40] (* Harvey P. Dale, Oct 01 2023 *)
  • PARI
    lista(nn) = {my(va = vector(nn)); va[1] = 1; for (n=2, nn, va[n] = fromdigits(vecsort(digits(2*va[n-1]+1)));); va;} \\ Michel Marcus, Aug 31 2021
    
  • Python
    from itertools import accumulate
    def atis(anm1, _): return int("".join(sorted(str(2*anm1+1))))
    print(list(accumulate([1]*39, atis))) # Michael S. Branicky, Aug 31 2021

Formula

a(n) = A004185(2*a(n-1)+1).
For k >= 1;
a(12*k-9) = 100^(k-1) * 16 - 1;
a(12*k-8) = 100^(k-1) * 14 - 1;
a(12*k-7) = 100^(k-1) * 28 - 1;
a(12*k-6) = 100^(k-1) * 56 - 1;
a(12*k-5) = 100^(k-1) * 112 - 1;
a(12*k-4) = 100^(k-1) * 224 - 1;
a(12*k-3) = 100^(k-1) * 448 - 1;
a(12*k-2) = 100^(k-1) * 590 - 1;
a(12*k-1) = 100^(k-1) * 1180 - 1;
a(12*k) = 100^(k-1) * 2360 - 1;
a(12*k+1) = 100^(k-1) * 1480 - 1;
a(12*k+2) = 100^(k-1) * 2600 - 1.
G.f.: -(1800*x^15 -720*x^14 +1080*x^13 -1080*x^12 -590*x^11 -142*x^10 -224*x^9 -112*x^8 -56*x^7 -28*x^6 -14*x^5 +2*x^4 -8*x^3 -4*x^2 -2*x -1) / ((x-1)*(10*x^6-1)*(10*x^6+1)). - Alois P. Heinz, Aug 02 2021
a(n) = 100*a(n-12) + 99 for n >= 15. - Pontus von Brömssen, Sep 01 2021

A368559 a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number not occurring earlier such that a(n) contains all the distinct digits of a(n-1) - a(n-2).

Original entry on oeis.org

1, 2, 10, 8, 12, 4, 18, 14, 24, 100, 67, 3, 46, 34, 21, 13, 28, 15, 31, 16, 51, 35, 61, 26, 53, 27, 62, 135, 37, 89, 25, 64, 39, 52, 103, 105, 20, 58, 38, 102, 146, 40, 106, 6, 101, 59, 42, 17, 125, 108, 71, 73, 22, 115, 93, 23, 70, 47, 32, 145, 113, 123, 104, 19, 85, 36, 49, 130, 81, 94
Offset: 1

Views

Author

Scott R. Shannon, Dec 30 2023

Keywords

Comments

The sequence is conjectured to be a permutation of the positive integers. The fixed points begin 1, 2, 95, 122, 156, 318, 1644, 1964, 2189, 2740, 8264, 16904, ... although it is likely there are infinitely more.

Examples

			a(3) = 10 as a(2) - a(1) = 2 - 1 = 1, and 10 is the smallest unused number to contain 1.
a(11) = 67 as a(10) - a(9) = 100 - 24 = 76, and 67 is the smallest unused number to contain 7 and 6.
		

Crossrefs

A345902 a(0) = 1; for n >= 1, a(n) = A004185(a(n-1)*n).

Original entry on oeis.org

1, 1, 2, 6, 24, 12, 27, 189, 1125, 1125, 1125, 12357, 124488, 1134468, 12255588, 12333888, 12234789, 11234799, 22222368, 222224499, 444448899, 2333467899, 12333567789, 12234567789, 222336666999, 1445555667789, 12334444556778, 33333336, 33333489, 111666789
Offset: 0

Views

Author

Ctibor O. Zizka, Jun 29 2021

Keywords

Comments

Rearranging of digits of a(n-1)*n in ascending order gives in step n the smallest number possible. For n >= 5; the number of digits of a(n) < the number of digits of n!.

Examples

			a(4) = A004185(4*6) = 24; a(5) = A004185(5*24) = 12; a(6) = A004185(6*12) = 27.
		

Crossrefs

Programs

  • PARI
    f(n) = fromdigits(vecsort(digits(n))); \\ A004185
    a(n) = if (n, f(a(n-1)*n), 1); \\ Michel Marcus, Jun 30 2021
  • Python
    def A004185(n):
        return 0 if n == 0 else int("".join(sorted(str(n))).strip('0'))
    def aupton(nn):
        alst = [1]
        for n in range(1, nn+1): alst.append(A004185(alst[-1]*n))
        return alst
    print(aupton(29)) # Michael S. Branicky, Jun 29 2021
    
Previous Showing 11-14 of 14 results.