A258758
Triangle T(n,k) = C(n+k-1,k)*C(2*n-1,n-k).
Original entry on oeis.org
1, 1, 1, 3, 6, 3, 10, 30, 30, 10, 35, 140, 210, 140, 35, 126, 630, 1260, 1260, 630, 126, 462, 2772, 6930, 9240, 6930, 2772, 462, 1716, 12012, 36036, 60060, 60060, 36036, 12012, 1716, 6435, 51480, 180180, 360360, 450450, 360360, 180180, 51480
Offset: 0
[1]
[1,1]
[3,6,3]
[10,30,30,10]
[35,140,210,140,35]
Cf.
A069723 (row sums, with a shift).
-
[[Binomial(n+k-1,k)*Binomial(2*n-1,n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 12 2015
-
max = 10; s = (2*(x + y))/(-1 + 4*x + Sqrt[1 - 4*x - 4*y] + 4*y) + O[x]^(max+2) + O[y]^(max+2); t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]; Table[t[n - k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 10 2015, after Vladimir Kruchinin *)
Flatten[Table[Binomial[n+k-1,k] Binomial[2n-1,n-k], {n, 0, 9}, {k, 0, n}]] (* Indranil Ghosh, Mar 04 2017 *)
-
tabl(nn) = {for (n=0, nn, for(k=0, n, print1(binomial(n+k-1,k)*binomial(2*n-1,n-k),", "););print(););};
tabl(9); \\ Indranil Ghosh, Mar 04 2017
A372506
Coefficient of x^n in the expansion of 1 / ( (1-x) * (1-2*x) )^n.
Original entry on oeis.org
1, 3, 23, 198, 1795, 16758, 159446, 1537308, 14967843, 146833830, 1449054178, 14369723316, 143072565454, 1429331585724, 14320668653580, 143838879376248, 1447883909314851, 14602334949928710, 147518977428892010, 1492559101878005700, 15121898521185194970
Offset: 0
-
A372506 := proc(n)
add(binomial(n+k-1,k)*binomial(3*n-1,n-k),k=0..n) ;
end proc:
seq(A372506(n),n=0..80) ; # R. J. Mathar, Oct 24 2024
-
Table[SeriesCoefficient[1/((1 - x)*(1 - 2*x))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 04 2024 *)
Table[Binomial[3*n - 1, n] * Hypergeometric2F1[-n, n, 2*n, -1], {n, 0, 20}] (* Vaclav Kotesovec, May 04 2024 *)
-
a(n, s=1, t=1, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t+u+1)*n-(s-1)*k-1, n-s*k));
A128406
a(n) = (n+1)*2^(n*(n+1)).
Original entry on oeis.org
1, 8, 192, 16384, 5242880, 6442450944, 30786325577728, 576460752303423488, 42501298345826806923264, 12379400392853802748991242240, 14278816360970775978458864905355264, 65334214448820184984967924626899496599552, 1187470080331358621040493926581979953470445191168
Offset: 0
-
Table[n 2^(n - 1) 2^(n - 1)^2, {n, 1, 10}]
Table[(n+1)2^(n(n+1)),{n,0,20}] (* Harvey P. Dale, Jun 21 2021 *)
A306625
Regular triangle T(n,k) = binomial(2*n-2*k,n-k)*((n+1)/k)*Sum_{k=0..floor((k-1)/2)} (-1)^k*binomial(2*k,k)*binomial(n+3*k-2*k,k-2*k-1), read by rows.
Original entry on oeis.org
2, 6, 12, 24, 36, 80, 100, 150, 240, 560, 420, 660, 1020, 1680, 4032, 1764, 2940, 4620, 7224, 12096, 29568, 7392, 13104, 21280, 33320, 52416, 88704, 219648, 30888, 58212, 98280, 156870, 244800, 386496, 658944, 1647360, 128700, 257400, 452760, 742140, 1170540, 1821600, 2882880, 4942080, 12446720
Offset: 1
Triangle begins
2,
6, 12,
24, 36, 80,
100, 150, 240, 560,
420, 660, 1020, 1680, 4032,
1764, 2940, 4620, 7224, 12096, 29568,
...
Right diagonal is
A069723 starting at index 2.
-
T(n,r) = binomial(2*n-2*r,n-r)*((n+1)/r)*sum(k=0, (r-1)\2, (-1)^k*binomial(2*r,k)*binomial(n+3*r-2*k,r-2*k-1));
tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n,k), ", ")););
Comments