cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A258758 Triangle T(n,k) = C(n+k-1,k)*C(2*n-1,n-k).

Original entry on oeis.org

1, 1, 1, 3, 6, 3, 10, 30, 30, 10, 35, 140, 210, 140, 35, 126, 630, 1260, 1260, 630, 126, 462, 2772, 6930, 9240, 6930, 2772, 462, 1716, 12012, 36036, 60060, 60060, 36036, 12012, 1716, 6435, 51480, 180180, 360360, 450450, 360360, 180180, 51480
Offset: 0

Views

Author

Vladimir Kruchinin, Jun 10 2015

Keywords

Comments

Triangle T(n,k), read by rows, given by (1, 2, 1/2, 3/2, 2/3, 4/3, 3/4, 5/4, ...) DELTA (1, 2, 1/2, 3/2, 2/3, 4/3, 3/4, 5/4, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jun 19 2015

Examples

			[1]
[1,1]
[3,6,3]
[10,30,30,10]
[35,140,210,140,35]
		

Crossrefs

Columns k=0-1 give: A088218, A002457(n-1) for n>0.
Cf. A069723 (row sums, with a shift).

Programs

  • Magma
    [[Binomial(n+k-1,k)*Binomial(2*n-1,n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 12 2015
    
  • Mathematica
    max = 10; s = (2*(x + y))/(-1 + 4*x + Sqrt[1 - 4*x - 4*y] + 4*y) + O[x]^(max+2) + O[y]^(max+2); t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]; Table[t[n - k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 10 2015, after Vladimir Kruchinin *)
    Flatten[Table[Binomial[n+k-1,k] Binomial[2n-1,n-k], {n, 0, 9}, {k, 0, n}]] (* Indranil Ghosh, Mar 04 2017 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for(k=0, n, print1(binomial(n+k-1,k)*binomial(2*n-1,n-k),", "););print(););};
    tabl(9); \\ Indranil Ghosh, Mar 04 2017

Formula

G.f.: A(x) = 1/(2 - C(x+y)), where C(x)=(1-sqrt(1-4*x))/(2*x) is g.f. of Catalan numbers (A000108).
It appears that T(n, k) = A088218(n)*binomial(n, k). - Michel Marcus, Jun 11 2015

A372506 Coefficient of x^n in the expansion of 1 / ( (1-x) * (1-2*x) )^n.

Original entry on oeis.org

1, 3, 23, 198, 1795, 16758, 159446, 1537308, 14967843, 146833830, 1449054178, 14369723316, 143072565454, 1429331585724, 14320668653580, 143838879376248, 1447883909314851, 14602334949928710, 147518977428892010, 1492559101878005700, 15121898521185194970
Offset: 0

Views

Author

Seiichi Manyama, May 04 2024

Keywords

Crossrefs

Programs

  • Maple
    A372506 := proc(n)
        add(binomial(n+k-1,k)*binomial(3*n-1,n-k),k=0..n) ;
    end proc:
    seq(A372506(n),n=0..80) ; # R. J. Mathar, Oct 24 2024
  • Mathematica
    Table[SeriesCoefficient[1/((1 - x)*(1 - 2*x))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 04 2024 *)
    Table[Binomial[3*n - 1, n] * Hypergeometric2F1[-n, n, 2*n, -1], {n, 0, 20}] (* Vaclav Kotesovec, May 04 2024 *)
  • PARI
    a(n, s=1, t=1, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t+u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..n} binomial(n+k-1,k) * binomial(3*n-1,n-k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x) * (1-2*x) ).
a(n) ~ (1 + sqrt(3)) * 2^(n - 3/2) * 3^((3*n-1)/2) / sqrt(Pi*n). - Vaclav Kotesovec, May 04 2024
D-finite with recurrence 5*n*(n-1)*a(n) +18*(n-1)*(n-3)*a(n-1) +12*(-45*n^2+90*n-22)*a(n-2) -216*(3*n-7)*(3*n-8)*a(n-3)=0. - R. J. Mathar, Oct 24 2024

A128406 a(n) = (n+1)*2^(n*(n+1)).

Original entry on oeis.org

1, 8, 192, 16384, 5242880, 6442450944, 30786325577728, 576460752303423488, 42501298345826806923264, 12379400392853802748991242240, 14278816360970775978458864905355264, 65334214448820184984967924626899496599552, 1187470080331358621040493926581979953470445191168
Offset: 0

Views

Author

Paul Barry, Mar 01 2007

Keywords

Comments

Hankel transform of A069723.
With offset 1, a(n) is the number of vertices with in-degree = 0 over all labeled digraphs (with self loops allowed) on n vertices. Equivalently, the number of elements in all labeled relations on an n-set that have no preimage. - Geoffrey Critzer, Aug 16 2016

Crossrefs

Programs

  • Mathematica
    Table[n 2^(n - 1) 2^(n - 1)^2, {n, 1, 10}]
    Table[(n+1)2^(n(n+1)),{n,0,20}] (* Harvey P. Dale, Jun 21 2021 *)

Formula

a(n) = A095340(n)*A006125(n+1).

A306625 Regular triangle T(n,k) = binomial(2*n-2*k,n-k)*((n+1)/k)*Sum_{k=0..floor((k-1)/2)} (-1)^k*binomial(2*k,k)*binomial(n+3*k-2*k,k-2*k-1), read by rows.

Original entry on oeis.org

2, 6, 12, 24, 36, 80, 100, 150, 240, 560, 420, 660, 1020, 1680, 4032, 1764, 2940, 4620, 7224, 12096, 29568, 7392, 13104, 21280, 33320, 52416, 88704, 219648, 30888, 58212, 98280, 156870, 244800, 386496, 658944, 1647360, 128700, 257400, 452760, 742140, 1170540, 1821600, 2882880, 4942080, 12446720
Offset: 1

Views

Author

Michel Marcus, Mar 01 2019

Keywords

Examples

			Triangle begins
     2,
     6,   12,
    24,   36,   80,
   100,  150,  240,  560,
   420,  660, 1020, 1680,  4032,
  1764, 2940, 4620, 7224, 12096, 29568,
  ...
		

Crossrefs

Sum of n-th row equals A000984(n)*A000225(n).
Right diagonal is A069723 starting at index 2.

Programs

  • PARI
    T(n,r) = binomial(2*n-2*r,n-r)*((n+1)/r)*sum(k=0, (r-1)\2, (-1)^k*binomial(2*r,k)*binomial(n+3*r-2*k,r-2*k-1));
    tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n,k), ", ")););
Previous Showing 21-24 of 24 results.