cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A070108 Number of integer triangles with perimeter n and prime side lengths which are obtuse and isosceles.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(k)<=1 until k = 140, for k = 141 there are A005044(141)=432 integer triangles, a(141)=2 as
[37=37<67]: 37+37+67 = 141 and 2*(37^2)<67^2 and 37, 67 are primes,
[41=41<59]: 41+41+59 = 141 and 2*(41^2)<59^2 and 41, 59 are primes.
		

Crossrefs

A070097 Number of integer triangles with perimeter n and prime side lengths which are both acute and scalene.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Crossrefs

A378819 a(n) is the number of distinct nondegenerate triangles whose sides are prime factors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 4, 1, 3, 4, 1, 1, 4, 1, 3, 3, 3, 1, 4, 1, 3, 1, 3, 1, 8, 1, 1, 3, 3, 4, 4, 1, 3, 3, 3, 1, 7, 1, 3, 4, 3, 1, 4, 1, 3, 3, 3, 1, 4, 3, 3, 3, 3, 1, 8, 1, 3, 3, 1, 3, 7, 1, 3, 3, 7, 1, 4, 1, 3, 4, 3, 4, 7, 1, 3, 1, 3, 1, 7, 3, 3, 3, 3
Offset: 1

Views

Author

Felix Huber, Dec 27 2024

Keywords

Comments

A prime factor can be used for several sides.
A nondegenerate triangle is a triangle whose sides (u, v, w) are such that u + v > w, v + w > u and u + w > v.

Examples

			a(10) = 3 because there are the 3 distinct nondegenerate triangles (2, 2, 2), (2, 5, 5), (5, 5, 5) whose sides are prime factors of 10. Since 2 + 2 < 5, (2, 2, 5) is not a triangle.
		

Crossrefs

Programs

  • Maple
    A378819:=proc(n)
       local a,i,j,k,L;
       L:=NumberTheory:-PrimeFactors(n);
       a:=0;
       for i to nops(L) do
          for j from i to nops(L) do
             for k from j to nops(L) while L[k]A378819(n),n=1..88);

Formula

a(n) = a(A007947(n)).
a(p^k) = 1 for prime powers p^k (p prime, k >= 1).

A379033 Numbers that are the product of exactly three (not necessarily distinct) primes and these primes are sides of a nondegenerate triangle.

Original entry on oeis.org

8, 12, 18, 27, 45, 50, 75, 98, 105, 125, 147, 175, 242, 245, 338, 343, 363, 385, 429, 507, 539, 578, 605, 637, 715, 722, 845, 847, 867, 969, 1001, 1058, 1083, 1105, 1183, 1309, 1331, 1445, 1547, 1573, 1587, 1615, 1682, 1729, 1805, 1859, 1922, 2023, 2057, 2185, 2197
Offset: 1

Views

Author

Felix Huber, Dec 24 2024

Keywords

Comments

Subsequence of A014612 and of A145784.
Numbers that are the product of exactly three (not necessarily distinct) primes and these primes are sides of a degenerate triangle are in A071142.

Examples

			12 = 2*2*3 is in the sequence because 2 + 2 > 3.
20 = 2*2*5 is not in the sequence because 2 + 2 < 5.
30 = 2*3*5 is not in the sequence because 2 + 3 = 5.
		

Crossrefs

Programs

  • Maple
    A379033:=proc(n)
       option remember;
       local a,i,j,P;
       if n=1 then
          8
       else
          for a from procname(n-1)+1 do
             P:=[];
             if NumberTheory:-Omega(a)=3 then
                for i in ifactors(a)[2] do
                   j:=0;
                   while jP[3] then
                   return a
                fi
             fi
          od
       fi	
    end proc;
    seq(A379033(n),n=1..51);

A385736 a(n) is the number of distinct nondegenerate triangles with perimeter n whose side lengths are triangular numbers.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 2, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 2, 1, 2, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 0, 1, 1, 0, 1
Offset: 0

Views

Author

Felix Huber, Jul 16 2025

Keywords

Comments

0, 1, 6, 10, 28, 55 are the only triangular numbers <= 10^6 that are not perimeters of triangles whose side lengths are triangular numbers. Conjecture: There are no other triangular numbers that have this property.

Examples

			The a(31) = 2 distinct nondegenerate triangles with perimeter 31 and whose side lengths are triangular numbers are [1, 15, 15] and [6, 10, 15].
		

Crossrefs

Programs

  • Maple
    A385736:=proc(N) # To get the first N + 1 terms.
        local p,x,y,z,i;
        p:=[];
        for z to floor((sqrt(24*N+9)-3)/6) do
            for x from z to floor((sqrt(4*N-3)-1)/2) do
                for y from max(z,floor((sqrt(1+4*(x^2+x-z^2-z))-1)/2)+1) to min(x,floor((sqrt(1+4*(2*N-x^2-x-z^2-z))-1)/2)) do
                    p:=[op(p),z*(z+1)/2+y*(y+1)/2+x*(x+1)/2]
                od
            od
        od;
        return seq(numboccur(p,i),i=0..N)
    end proc;
    A385736(87);

Formula

Trivial upper bound: a(n) <= A005044(n).
a(A385737(n)) >= 1.

A308119 Sum of the smallest side lengths of all integer-sided triangles with prime side lengths and perimeter n.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 2, 2, 3, 0, 3, 2, 3, 0, 8, 2, 8, 0, 5, 0, 7, 0, 5, 2, 10, 0, 15, 2, 15, 0, 12, 0, 18, 0, 23, 2, 21, 0, 39, 2, 37, 0, 36, 0, 31, 0, 47, 2, 47, 0, 46, 0, 48, 0, 30, 0, 47, 0, 61, 2, 35, 0, 66, 2, 92, 0, 61, 0, 77, 0, 60, 0, 43, 0, 79, 2, 90
Offset: 1

Views

Author

Wesley Ivan Hurt, May 13 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[k (PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * c(i) * c(k) * c(n-i-k) * k, where c is the prime characteristic (A010051).

A378675 Areas of trapezoids with exactly one pair of parallel sides having prime sides and height.

Original entry on oeis.org

15, 21, 27, 27, 45, 45, 55, 63, 65, 81, 85, 85, 95, 99, 115, 117, 125, 125, 135, 145, 155, 171, 175, 175, 185, 189, 205, 207, 225, 235, 243, 245, 265, 275, 279, 295, 297, 315, 315, 325, 333, 335, 355, 365, 385, 387, 405, 407, 425, 451, 455, 459, 473, 475, 475
Offset: 1

Views

Author

Felix Huber, Dec 04 2024

Keywords

Examples

			27 is twice in the sequence because there are two distinct trapezoids [p, d, q, f, h] (p and q are parallel, height h) with prime sides and height and area 27: [13, 5, 5, 5, 3], [11, 3, 7, 5, 3].
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    A378675:=proc(A)
       local m,p,q,i,j,d,f,h,x,y,M,T;
       if isprime(A)=false and A>1 then
          T:=[];
          M:=map(x->A/x,select(isprime,(Divisors(A)) minus {2}));
          for m in M do
             for i to pi(floor(m-1/2)) do
                q:=ithprime(i);
                p:=2*m-q;
                if isprime(p) then
                   h:=A/m;
    	       for x from max(4,floor((p-q+1)/2)) by 2 to (h^2-1)/2 do
    	          y:=p-q-x;
    	          if issqr(x^2+h^2) and issqr(y^2+h^2) then
    	             d:=isqrt(y^2+h^2);
    	             f:=isqrt(x^2+h^2);
    	             if isprime(d) and isprime(f) then
    	                T:=[op(T),A]
    	             fi
    	          fi
    	       od
    	    fi
             od
          od;
          return op(T)
       fi;
    end proc;
    seq(A378675(A),A=1..475);

A308165 Sum of the perimeters of all integer-sided triangles with perimeter n and prime sides.

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 7, 8, 9, 0, 11, 12, 13, 0, 30, 16, 34, 0, 19, 0, 21, 0, 23, 24, 50, 0, 81, 28, 87, 0, 62, 0, 66, 0, 105, 36, 111, 0, 195, 40, 205, 0, 172, 0, 135, 0, 235, 48, 245, 0, 204, 0, 212, 0, 110, 0, 171, 0, 295, 60, 183, 0, 378, 64, 520, 0, 335, 0
Offset: 1

Views

Author

Wesley Ivan Hurt, May 15 2019

Keywords

Crossrefs

Cf. A070088.

Programs

  • Mathematica
    Table[n*Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]

Formula

a(n) = n * A070088(n).
a(n) = n * Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * A010051(i) * A010051(k) * A010051(n-i-k).

A308318 Number of integer-sided triangles with perimeter n and at least one nonprime side length.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 2, 2, 3, 2, 4, 4, 5, 4, 6, 7, 9, 8, 11, 10, 13, 11, 14, 14, 16, 15, 18, 19, 22, 21, 25, 24, 27, 26, 30, 30, 32, 32, 35, 37, 40, 40, 45, 44, 47, 47, 51, 52, 57, 56, 61, 61, 68, 65, 72, 70, 75, 74, 82, 80, 85, 84, 88, 91, 97, 96, 103
Offset: 1

Views

Author

Wesley Ivan Hurt, May 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(1 - (PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1])) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * (1 - A010051(i) * A010051(k) * A010051(n-i-k)).
a(n) = A005044(n) - A070088(n).
Previous Showing 11-19 of 19 results.